Either way, I can get arbitrarily good approximations of arbitrary nonlinear differential/difference equations using only linear probabilistic evolution at the cost of a (much) larger state space. So if you can implement it in a brain or a computer, there is a sufficiently large probabilistic dynamic that can model it. More really is different.
So I view all deductive ab-initio arguments about what LLMs can/can't do due to their architecture as fairly baseless.
(Note that the "large" here is doing a lot of heavy lifting. You need _really_ large. See https://en.m.wikipedia.org/wiki/Transfer_operator)
If you think there is a threshold at which point some large enough feedforward network develops the capability to backtrack then I'd like to see your argument for it.
I think it can be done. I started a chatbot that works like this some time back (2024) but paused work on it since January.
In brief, you shorten the context by discarding the context that didn't work out.