This seems to be quite a bit of a strawman to me.
ML is such a major part of the field today and at a minimum requires a fairly strong foundation in calc, linear algebra, and probability theory that I earnestly don't believe there are that many CS students who view calculus as "useless". I mean, anyone who has written some Pytorch has used calculus in a practical setting.
Now in pure software engineering you will find a lot of people who don't know calculus, but even then I'm not sure any would decry it as useless, they would just admit they're scared to learn it.
If anything, I'm a bit more horrified at how rapidly peoples understanding of things like the Theory of Computation seem to be vanishing. I've been shocked with how many CS grads I've talked to that don't really understand the relationship between regular languages and context free grammars, don't understand what 'non-determinism' means in the context of computability, etc.
Not really, if you ever listen to CS undergrads or people in non-traditional schooling (bootcamps, etc.) talk about software engineering this opinion is essentially ubiquitous. People interested in ML are less likely to hold this exact opinion, but they will hold qualitatively identical ones ("do you really need multivariable calculus/linear algebra to do ML?"). It is precisely because people (primarily Americans) are scared to learn mathematics that they rationalize away this fear by saying the necessary mathematics must not be essential, and indeed it is true that many people get away without knowing it.