Oh yes, this makes a lot of sense, thank you for the "nit" (which doesn't feel like a nit to me, it feels like an important conceptual correction). When I was writing the post I definitely paused at that part, knowing that something was off about describing the model as having a dimension that maps to gender. As you said, since the models are general-purpose and work so well in so many domains, there's no way that there's a 1-to-1 correspondence between concepts and dimensions.
I think your comment is also clicking for me now because I previously did not really understand how cosine similarity worked, but then watched videos like this and understand it better now: https://youtu.be/e9U0QAFbfLI
I will eventually update the post to correct this inaccuracy, thank you for improving my own wetware's conceptual model of embeddings