Then you top it on with `?` shortcut and the functional interface of Result and suddenly error handling becomes fun and easy to deal with, rather than just "return false" with a "TODO: figure out error handling".
Then you top it on with `?` shortcut and the functional interface of Result and suddenly error handling becomes fun and easy to deal with, rather than just "return false" with a "TODO: figure out error handling".
This isn't really true since Rust has panics. It would be nice to have out-of-the-box support for a "no panics" subset of Rust, which would also make it easier to properly support linear (no auto-drop) types.
Return an AllocationError. Rust unfortunately picked the wrong default here for the sake of convenience, along with the default of assuming a global allocator. It's now trying to add in explicit allocators and allocation failure handling (A:Allocator type param) at the cost of splitting the ecosystem (all third-party code, including parts of libstd itself like std::io::Read::read_to_end, only work with A=GlobalAlloc).
Zig for example does it right by having explicit allocators from the start, plus good support for having the allocator outside the type (ArrayList vs ArrayListUnmanaged) so that multiple values within a composite type can all use the same allocator.
>Also many functions use addition and what is one supposed to do in case of overflow?
Return an error ( https://doc.rust-lang.org/stable/std/primitive.i64.html#meth... ) or a signal that overflow occurred ( https://doc.rust-lang.org/stable/std/primitive.i64.html#meth... ). Or use wrapping addition ( https://doc.rust-lang.org/stable/std/primitive.i64.html#meth... ) if that was intended.
Note that for the checked case, it is possible to have a newtype wrapper that impls std::ops::Add etc, so that you can continue using the compact `+` etc instead of the cumbersome `.checked_add(...)` etc. For the wrapping case libstd already has such a newtype: std::num::Wrapping.
Also, there is a clippy lint for disallowing `+` etc ( https://rust-lang.github.io/rust-clippy/master/index.html#ar... ), though I assume only the most masochistic people enable it. I actually tried to enable it once for some parsing code where I wanted to enforce checked arithmetic, but it pointlessly triggered on my Checked wrapper (as described in the previous paragraph) so I ended up disabling it.
Rust picked the right default for applications that run in an OS whereas Zig picked the right default for embedded. Both are good for their respective domains, neither is good at both domains. Zig's choice is verbose and useless on a typical desktop OS, especially with overcommit, whereas Rust's choice is problematic for embedded where things just work differently.
My current $dayjob involves a "server" application that needs to run in a strict memory limit. We had to write our own allocator and collections because the default ones' insistence on using GlobalAlloc infallibly doesn't work for us.
Thinking that only "embedded" cares about custom allocators is just naive.
I said absolutely no such thing? In my $dayjob working on graphics I, too, have used custom allocators for various things, primarily in C++ though, not Rust. But that in no way makes the default of a global allocator wrong, and often those custom allocators have specialized constraints that you can exploit with custom containers, too, so it's not like you'd be reaching for the stdlib versions probably anyway.