←back to thread

555 points maheshrijal | 2 comments | | HN request time: 0s | source
Show context
_fat_santa ◴[] No.43708027[source]
So at this point OpenAI has 6 reasoning models, 4 flagship chat models, and 7 cost optimized models. So that's 17 models in total and that's not even counting their older models and more specialized ones. Compare this with Anthropic that has 7 models in total and 2 main ones that they promote.

This is just getting to be a bit much, seems like they are trying to cover for the fact that they haven't actually done much. All these models feel like they took the exact same base model, tweaked a few things and released it as an entirely new model rather than updating the existing ones. In fact based on some of the other comments here it sounds like these are just updates to their existing model, but they release them as new models to create more media buzz.

replies(22): >>43708044 #>>43708100 #>>43708150 #>>43708219 #>>43708340 #>>43708462 #>>43708605 #>>43708626 #>>43708645 #>>43708647 #>>43708800 #>>43708970 #>>43709059 #>>43709249 #>>43709317 #>>43709652 #>>43709926 #>>43710038 #>>43710114 #>>43710609 #>>43710652 #>>43713438 #
shmatt ◴[] No.43708462[source]
Im old enough to remember the mystery and hype before o*/o1/strawberry that was supposed to be essentially AGI. We had serious news outlets write about senior people at OpenAI quitting because o1 was SkyNet

Now we're up to o4, AGI is still not even in near site (depending on your definition, I know). And OpenAI is up to about 5000 employees. I'd think even before AGI a new model would be able to cover for at least 4500 of those employees being fired, is that not the case?

replies(8): >>43708694 #>>43708755 #>>43708824 #>>43709411 #>>43709774 #>>43710199 #>>43710213 #>>43710748 #
actsasbuffoon ◴[] No.43709411[source]
Meanwhile even the highest ranked models can’t do simple logic tasks. GothamChess on YouTube did some tests where he played against a bunch of the best models and every single one of them failed spectacularly.

They’d happily lose a queen to take a pawn. They failed to understand how pieces are even allowed to move, hallucinated the existence of new pieces, repeatedly declared checkmate when it wasn’t, etc.

I tried it last night with Gemini 2.5 Pro and it made it 6 turns before it started making illegal moves, and 8 turns before it got so confused about the state of the board before it refused to play with me any longer.

I was in the chess club in 3rd grade. One of the top ranked LLMs in the world is vastly dumber than I was in 3rd grade. But we’re going to pour hundreds of billions into this in the hope that it can end my career? Good luck with that, guys.

replies(4): >>43709556 #>>43710189 #>>43710252 #>>43716131 #
1. schindlabua ◴[] No.43709556[source]
Chess is not exactly a simple logic task. It requires you to keep track of 32 things in a 2d space.

I remember being extremely surprised when I could ask GPT3 to rotate a 3d model of a car in it's head and ask it about what I would see when sitting inside, or which doors would refuse to open because they're in contact with the ground.

It really depends on how much you want to shift the goalposts on what constitutes "simple".

replies(1): >>43710056 #
2. yusina ◴[] No.43710056[source]
> Chess is not exactly a simple logic task.

Compare to what a software engineer is able to do, it is very much a simple logic task. Or the average person having a non-trivial job. Or a beehive organizing its existence, from its amino acids up to hive organization. All those things are magnitudes harder than chess.

> I remember being extremely surprised when I could ask GPT3 to rotate a 3d model of a car in it's head and ask it about what I would see when sitting inside, or which doors would refuse to open because they're in contact with the ground.

It's not reasoning its way there. Somebody asked something similar some time in the corpus and that corpus also contained the answers. That's why it can answer. After a quite small number of moves, the chess board it unique and you can't fake it. You need to think ahead. A task which computers are traditionally very good at. Even trained chess players are. That LLMs are not goes to show that they are very far from AGI.