It now provides 7% of the world's electricity”
It now provides 7% of the world's electricity”
Now, their prices have gone down, their generation per unit has gone up, and much more is known about how they behave long-term.
The world has a LOT of power generation. It will take time to replace. But with every time that some existing power generation source shuts down due to age, or expansion occurs somewhere, it will inevitably be done with solar/wind. It's just more cost effective now.
In the end it is not environmental concerns that will cause solar and wind to become commonplace. It's just economics. Slapping down something that generates power for 20-30 years with no input fuel is just way more economically feasible than anything that requires fuel. They still have maintenance costs, but it's nothing by comparison. They can completely undercut other sources of power.
How Big Projects Get Done describes roads, wind and solar as three of the top five projects types for likelihood to come in on time and on budget.
Why? The first pour and the last pour on making a road are substantially the same. The people working on it get better at doing so as they go. They iterate on the process and reduce waste. Solar and wind are installing the same structures 10, 20, 50 times so they go fast once they start and the scope can be adjusted up or down as long as you have contracts in place.
Building a nuclear plant takes for-fucking-ever, there are a million different tasks to do, and they are built so far apart that getting the same team to build another means a long commute and a different local government to contend with every time. So budgeting is difficult.
What you actually need is mass production, and a regulatory environment that facilitates the same, e.g. by putting most of the certification in the design phase and then making production certification limited to the matter of whether what was built follows the certified spec.
The ideal would be to limit the on-site construction to common fungible commodities like pouring concrete and have any reactor-specific components mass produced in a factory. Then the same factory can be producing components for reactors whether they're going up in New York or Seattle or London and you get your economies of scale.