←back to thread

625 points lukebennett | 2 comments | | HN request time: 0s | source
Show context
LASR ◴[] No.42140045[source]
Question for the group here: do we honestly feel like we've exhausted the options for delivering value on top of the current generation of LLMs?

I lead a team exploring cutting edge LLM applications and end-user features. It's my intuition from experience that we have a LONG way to go.

GPT-4o / Claude 3.5 are the go-to models for my team. Every combination of technical investment + LLMs yields a new list of potential applications.

For example, combining a human-moderated knowledge graph with an LLM with RAG allows you to build "expert bots" that understand your business context / your codebase / your specific processes and act almost human-like similar to a coworker in your team.

If you now give it some predictive / simulation capability - eg: simulate the execution of a task or project like creating a github PR code change, and test against an expert bot above for code review, you can have LLMs create reasonable code changes, with automatic review / iteration etc.

Similarly there are many more capabilities that you can ladder on and expose into LLMs to give you increasingly productive outputs from them.

Chasing after model improvements and "GPT-5 will be PHD-level" is moot imo. When did you hire a PHD coworker and they were productive on day-0 ? You need to onboard them with human expertise, and then give them execution space / long-term memories etc to be productive.

Model vendors might struggle to build something more intelligent. But my point is that we already have so much intelligence and we don't know what to do with that. There is a LOT you can do with high-schooler level intelligence at super-human scale.

Take a naive example. 200k context windows are now available. Most people, through ChatGPT, type out maybe 1500 tokens. That's a huge amount of untapped capacity. No human is going to type out 200k of context. Hence why we need RAG, and additional forms of input (eg: simulation outcomes) to fully leverage that.

replies(43): >>42140086 #>>42140126 #>>42140135 #>>42140347 #>>42140349 #>>42140358 #>>42140383 #>>42140604 #>>42140661 #>>42140669 #>>42140679 #>>42140726 #>>42140747 #>>42140790 #>>42140827 #>>42140886 #>>42140907 #>>42140918 #>>42140936 #>>42140970 #>>42141020 #>>42141275 #>>42141399 #>>42141651 #>>42141796 #>>42142581 #>>42142765 #>>42142919 #>>42142944 #>>42143001 #>>42143008 #>>42143033 #>>42143212 #>>42143286 #>>42143483 #>>42143700 #>>42144031 #>>42144404 #>>42144433 #>>42144682 #>>42145093 #>>42145589 #>>42146002 #
crystal_revenge ◴[] No.42140135[source]
I don't think we've even started to get the most value out of current gen LLMs. For starters very few people are even looking at sampling which is a major part of the model performance.

The theory behind these models so aggressively lags the engineering that I suspect there are many major improvements to be found just by understanding a bit more about what these models are really doing and making re-designs based on that.

I highly encourage anyone seriously interested in LLMs to start spending more time in the open model space where you can really take a look inside and play around with the internals. Even if you don't have the resources for model training, I feel personally understanding sampling and other potential tweaks to the model (lots of neat work on uncertainty estimations, manipulating the initial embedding the prompts are assigned, intelligent backtracking, etc).

And from a practical side I've started to realize that many people have been holding on of building things waiting for "that next big update", but there a so many small, annoying tasks that can be easily automated.

replies(8): >>42140256 #>>42141284 #>>42141433 #>>42141459 #>>42141522 #>>42141760 #>>42142470 #>>42143106 #
ppeetteerr ◴[] No.42141284[source]
The reason people are holding out is that the current generation of models are still pretty poor in many areas. You can have it craft an email, or to review your email, but I wouldn't trust an LLM with anything mission-critical. The accuracy of the generated output is too low be trusted in most practical applications.
replies(2): >>42142016 #>>42144223 #
jeswin ◴[] No.42144223[source]
Google (even now) wasn't absolutely accurate either. That didn't stop it from becoming many billions worth.

> You can have it craft an email, or to review your email, but I wouldn't trust an LLM with anything mission-critical

My point is that an entire world lies between these two extremes.

replies(3): >>42145162 #>>42145790 #>>42152124 #
netdevnet ◴[] No.42145790[source]
Why don't you give actual concrete testable examples back with evidence where this is the case? Put your skin in the game.
replies(1): >>42148527 #
1. jacobr1 ◴[] No.42148527{3}[source]
A support ticket is a good middle ground. This is probably the area of most robust enterprise deployment. Synthesizing knowledge to produce a draft reply with some logic either to automatically send it or have human review. There are both shitty and ok systems that save real money with case deflection and even improved satisfaction rates. Partly this works because human responses can also suck, so you are raising a low bar. But it is a real use case with real money and reputation on the line.
replies(1): >>42152090 #
2. ppeetteerr ◴[] No.42152090[source]
Keyword is "draft". You still need a person to review the response with knowledge of the context of the issue. It's the same as my email example.