←back to thread

625 points lukebennett | 1 comments | | HN request time: 0s | source
Show context
LASR ◴[] No.42140045[source]
Question for the group here: do we honestly feel like we've exhausted the options for delivering value on top of the current generation of LLMs?

I lead a team exploring cutting edge LLM applications and end-user features. It's my intuition from experience that we have a LONG way to go.

GPT-4o / Claude 3.5 are the go-to models for my team. Every combination of technical investment + LLMs yields a new list of potential applications.

For example, combining a human-moderated knowledge graph with an LLM with RAG allows you to build "expert bots" that understand your business context / your codebase / your specific processes and act almost human-like similar to a coworker in your team.

If you now give it some predictive / simulation capability - eg: simulate the execution of a task or project like creating a github PR code change, and test against an expert bot above for code review, you can have LLMs create reasonable code changes, with automatic review / iteration etc.

Similarly there are many more capabilities that you can ladder on and expose into LLMs to give you increasingly productive outputs from them.

Chasing after model improvements and "GPT-5 will be PHD-level" is moot imo. When did you hire a PHD coworker and they were productive on day-0 ? You need to onboard them with human expertise, and then give them execution space / long-term memories etc to be productive.

Model vendors might struggle to build something more intelligent. But my point is that we already have so much intelligence and we don't know what to do with that. There is a LOT you can do with high-schooler level intelligence at super-human scale.

Take a naive example. 200k context windows are now available. Most people, through ChatGPT, type out maybe 1500 tokens. That's a huge amount of untapped capacity. No human is going to type out 200k of context. Hence why we need RAG, and additional forms of input (eg: simulation outcomes) to fully leverage that.

replies(43): >>42140086 #>>42140126 #>>42140135 #>>42140347 #>>42140349 #>>42140358 #>>42140383 #>>42140604 #>>42140661 #>>42140669 #>>42140679 #>>42140726 #>>42140747 #>>42140790 #>>42140827 #>>42140886 #>>42140907 #>>42140918 #>>42140936 #>>42140970 #>>42141020 #>>42141275 #>>42141399 #>>42141651 #>>42141796 #>>42142581 #>>42142765 #>>42142919 #>>42142944 #>>42143001 #>>42143008 #>>42143033 #>>42143212 #>>42143286 #>>42143483 #>>42143700 #>>42144031 #>>42144404 #>>42144433 #>>42144682 #>>42145093 #>>42145589 #>>42146002 #
yk ◴[] No.42140936[source]
To a certain extent I think we get a better understanding what llms can do, and my estimation for the next ten years is more like best UI ever rather than llms will replace humanity. Now best UI ever is something that can certainly deliver a lot of value, 80% of all buttons in a car should be replaced by actually good voice control, and I think that is were we are going to see a lot of very interesting applications: Hey washing machine, this is two t-shirts and a jeans. (The washing machine can then figure out it's program by itself, I don't want to memorize the table in the manual.)
replies(2): >>42141220 #>>42144879 #
1. lokimedes ◴[] No.42141220[source]
To each their own, but I don’t look forward to having my kids yelling, a podcast in my ears and having to explain to my tumbler that wool must be spun at 1000 RPM. Humans have varying preferences when it comes to communication and sensing, making our machine interactions favor the extroverted talkative exhibitionists is really only one modality.