←back to thread

625 points lukebennett | 1 comments | | HN request time: 0s | source
Show context
LASR ◴[] No.42140045[source]
Question for the group here: do we honestly feel like we've exhausted the options for delivering value on top of the current generation of LLMs?

I lead a team exploring cutting edge LLM applications and end-user features. It's my intuition from experience that we have a LONG way to go.

GPT-4o / Claude 3.5 are the go-to models for my team. Every combination of technical investment + LLMs yields a new list of potential applications.

For example, combining a human-moderated knowledge graph with an LLM with RAG allows you to build "expert bots" that understand your business context / your codebase / your specific processes and act almost human-like similar to a coworker in your team.

If you now give it some predictive / simulation capability - eg: simulate the execution of a task or project like creating a github PR code change, and test against an expert bot above for code review, you can have LLMs create reasonable code changes, with automatic review / iteration etc.

Similarly there are many more capabilities that you can ladder on and expose into LLMs to give you increasingly productive outputs from them.

Chasing after model improvements and "GPT-5 will be PHD-level" is moot imo. When did you hire a PHD coworker and they were productive on day-0 ? You need to onboard them with human expertise, and then give them execution space / long-term memories etc to be productive.

Model vendors might struggle to build something more intelligent. But my point is that we already have so much intelligence and we don't know what to do with that. There is a LOT you can do with high-schooler level intelligence at super-human scale.

Take a naive example. 200k context windows are now available. Most people, through ChatGPT, type out maybe 1500 tokens. That's a huge amount of untapped capacity. No human is going to type out 200k of context. Hence why we need RAG, and additional forms of input (eg: simulation outcomes) to fully leverage that.

replies(43): >>42140086 #>>42140126 #>>42140135 #>>42140347 #>>42140349 #>>42140358 #>>42140383 #>>42140604 #>>42140661 #>>42140669 #>>42140679 #>>42140726 #>>42140747 #>>42140790 #>>42140827 #>>42140886 #>>42140907 #>>42140918 #>>42140936 #>>42140970 #>>42141020 #>>42141275 #>>42141399 #>>42141651 #>>42141796 #>>42142581 #>>42142765 #>>42142919 #>>42142944 #>>42143001 #>>42143008 #>>42143033 #>>42143212 #>>42143286 #>>42143483 #>>42143700 #>>42144031 #>>42144404 #>>42144433 #>>42144682 #>>42145093 #>>42145589 #>>42146002 #
1. brookst ◴[] No.42140669[source]
> Question for the group here: do we honestly feel like we've exhausted the options for delivering value on top of the current generation of LLMs?

Certainly not.

But technology is all about stacks. Each layer strives to improve, right up through UX and business value. The uses for 1µm chips had not been exhausted in 1989 when the 486 shipped in 800nm. 250nm still had tons of unexplored uses when the Pentium 4 shipped on 90nm.

Talking about scaling at the the model level is like talking about transistor density for silicon: it's interesting, and relevant, and we should care... but it is not the sole determinent of what use cases can be build and what user value there is.