At the very early phase of the boom I was among a very few who knew and predicted this (usually most free and deep thinking/knowledgeable). Then my prediction got reinforced by the results. One of the best examples was with one of my experiments that all today's AI's failed to solve tree serialization and de-serialization in each of the DFS(pre-order/in-order/post-order) or BFS(level-order) which is 8 algorithms (2x4) and the result was only 3 correct! Reason is "limited training inputs" since internet and open source does not have other solutions :-) .
So, I spent "some" time and implemented all 8, which took me few days. By the way this proves/demonstrates that ~15-30min pointless leetcode-like interviews are requiring to regurgitate/memorize/not-think. So, as a logical hard consequence there will.has-to be a "crash/cleanup" in the area of leetcode-like interviews as they will just be suddenly proclaimed as "pointless/stupid"). However, I decided not to publish the rest of the 5 solutions :-)
This (and other experiments) confirms hard limits of the LLM approach (even when used with chain-of-thought). Increasing the compute on the problem will produce increasingly smaller and smaller results (inverse exponential/logarithmic/diminishing-returns) = new AGI approach/design is needed and to my knowledge majority of the inve$tment (~99%) is in LLM, so "buckle up" at-some-point/soon?
Impacts and realities; LLM shall "run it's course" (produce some products/results/$$$, get reviewed/$corrected) and whoever survives after that pruning shall earn money on those products while investing in the new research to find new AGI design/approach (which could take quite a long time,... or not). NVDA is at the center of thi$ and time-wise this peak/turn/crash/correction is hard to predict (although I see it on the horizon and min/max time can be estimated). Be aware and alert. I'll stop here and hold my other number of thoughts/opinions/ideas for much deeper discussion. (BTW I am still "full in on NVDA" until,....)