A few I’ve seen are:
- The goal should be to have latent outputs as closely resemble gaussian distributed terms between -1 and 1 with a variance of 1, but the outputs are unbounded (you could easily clamp or apply tanh to force them to be between -1 and 1), and the KL loss weight is too low, hence why the latents are weighed by a magic number to more closely fit the -1 to 1 range before being invested by the diffusion model.
- To decrease the computational load of the diffusion model, you should reduce the spatial dimensions of the input - having a low number of channels is irrelevant. The SD VAE turns each 8x8x3 block into a 1x1x4 block when it could be turning it into a 1x1x8 (or even higher) block and preserve much more detail at basically 0 computational cost, since the first operation the diffusion model does is apply a convolution to greatly increase the number of channels.
- The discriminator is based on a tiny PatchGAN, which is an ancient model by modern standards. You can have much better results by applying some of the GAN research of the last few years, or of course using a diffusion decoder which is then distilled either with consistency or adversarial distillation.
- KL divergence in general is not even the most optimal way to achieve the goals of a latent diffusion model’s VAE, which is to decrease the spatial dimensions of the input images and have a latent space that’s robust to noise and local perturbations. I’ve had better results with a vanilla AE, clamping the outputs, having a variance loss term and applying various perturbations to the latents before they are ingested by the decoder.