←back to thread

899 points georgehill | 1 comments | | HN request time: 0.39s | source
Show context
samwillis ◴[] No.36216196[source]
ggml and llama.cpp are such a good platform for local LLMs, having some financial backing to support development is brilliant. We should be concentrating as much as possible to do local inference (and training) based on privet data.

I want a local ChatGPT fine tuned on my personal data running on my own device, not in the cloud. Ideally open source too, llama.cpp is looking like the best bet to achieve that!

replies(6): >>36216377 #>>36216465 #>>36216508 #>>36217604 #>>36217847 #>>36221973 #
SparkyMcUnicorn ◴[] No.36217604[source]
Maybe I'm wrong, but I don't think you want it fine-tuned on your data.

Pretty sure you might be looking for this: https://github.com/SamurAIGPT/privateGPT

Fine-tuning is good for treating it how to act, but not great for reciting/recalling data.

replies(4): >>36219307 #>>36220595 #>>36226771 #>>36241658 #
gtirloni ◴[] No.36226771[source]
> Fine-tuning is good for treating it how to act, but not great for reciting/recalling data.

What underlying process makes it this way? Is it because the prompt has heavier weight?

replies(2): >>36229475 #>>36242863 #
1. SparkyMcUnicorn ◴[] No.36229475[source]
I think your question is asking about the fundamentals of how an LLM works, which I'm not really qualified to answer. But I do have a general understanding of it all.

Fine-tuning is like having the model take a class on a certain subject. By the end of the class, it's going to have a general understanding on how to do that thing, but it's probably going to struggle when trying to quote the textbooks verbatim.

A good use-case for fine-tuning is teaching it a response style or format. If you fine-tune a model to only respond in JSON, then you no longer need to include formatting instructions in your prompt to get a JSON output.