←back to thread

131 points mg | 1 comments | | HN request time: 0.273s | source
Show context
zizee ◴[] No.26598033[source]
I think the future will be robust national/international grids, with a mixture of storage options (batteries/pumped hydro) to smooth out the intermittent nature of wind and solar.

Cynics always talk about the amount of energy storage required for solar as if you need to store 24 hours of energy for solar/wind to be viable.

I'd like to see numbers on having 1 hour of storage for peak demand, a robust national grid, and appropriately provisioned and placed solar and wind, taking the duck curve into consideration.

replies(6): >>26598222 #>>26598329 #>>26598526 #>>26598746 #>>26599340 #>>26599508 #
manfredo ◴[] No.26598222[source]
Even achieving just one hour of storage globally amounts to 2.5 TWh of storage. By comparison the entire world produces ~300 GWh worth of lithium ion battery annually. That leaves geographically limited options like pumped hydroelectricity, and solutions not yet deployed at any significant scale like hydrogen fuel cells, synthetic methane, thermal batteries, flywheels, etc.

Realistically we should saturate daytime energy demand with solar, and if there aren't any scalable storage options by then switch gears and proceed with hydroelectric where it's viable and nuclear where it's not.

replies(7): >>26598287 #>>26598427 #>>26598481 #>>26598549 #>>26598594 #>>26598763 #>>26599062 #
nicoburns ◴[] No.26598287[source]
> Even achieving just one hour of storage globally amounts to 2.5 TWh of storage. By comparison the entire world produces ~300 GWh worth of lithium ion battery annually

... so if we could increase battery production by just 10x, then we could create an hours worth of storage every year. That seems... very doable.

replies(2): >>26598326 #>>26598345 #
manfredo ◴[] No.26598345[source]
And then we'd have to continue that production for two and a half decades to get to 1 day of storage. And we'd also have to drastically increase our battery recycling capacity to match (remember most lithium ion batteries last 1000-2000 cycles).
replies(1): >>26598377 #
jeffbee ◴[] No.26598377[source]
Nobody needs 1 full day of storage.
replies(2): >>26598416 #>>26599546 #
Manfredo_1 ◴[] No.26599546[source]
We'd actually need 3 weeks of storage to migrate to a fully renewable grid: https://pv-magazine-usa.com/2018/03/01/12-hours-energy-stora...
replies(1): >>26599637 #
Qwertious ◴[] No.26599637[source]
From your own source:

"The solar heavy network wouldn’t need energy storage with an HVDC network."

So no, we wouldn't need that. HVDC would be far cheaper.

replies(1): >>26599659 #
Manfredo_1 ◴[] No.26599659[source]
A solar heavy network would still need 12 hours of storage to accommodate nighttime energy use. More actually, because of greater seasonal fluctuations further from the equator.

All of the Americas experience night time simultaneously for at least 8 hours a day. Even if we ran HVDC lines to the Sahara, there's still a period of time where most sunlight is shining on the pacific ocean.

replies(1): >>26619198 #
1. Qwertious ◴[] No.26619198[source]
Yes, 100% solar makes no sense. Thankfully, we have other sources such as wind.

Also, if you can run HVDC to the Sahara you could run it to hydro plants, so I don't think that's a good hypothetical.

But mostly, talking about pure solar just makes no sense.