Also, hydro dams kill a lot of people when they have accidents.
So 1 kilowatt-hour is 3.6 million joules. One liter (kilogram) of water weighs approximately 10 newtons.
So take one cubic meter (1000 kilograms) of water and move it up one meter, and you have stored 0.0028 kWh. You can see this is where the math becomes tricky without using geology for help.
Let's say you can create a height differential of 50 meters by building in a smart way - each cubic meter of storage you build will now store you 0.139 kWh. And a cubic meter is quite a lot. A full Olympic-size swimming pool stores only 2500 cubic meters, equivalent to only 347 kWh.
That's only the battery capacity of three and a half Teslas, equivalent to the daily consumption of ~12 US homes. You need a lot of these 50-meter elevated Olympic-size swimming pools, and the water and generators to run them. I suppose it's sort of feasible engineering wise, but I doubt it'll be cheap enough. Comparing with the Teslas - can you get this done for the less of the order of $300,000, minus the cost of three luxury cars worth of components?
With batteries, we're getting there fast, and in a way that's economically sound.