←back to thread

314 points pretext | 1 comments | | HN request time: 0.194s | source
Show context
gardnr ◴[] No.46220742[source]
This is a 30B parameter MoE with 3B active parameters and is the successor to their previous 7B omni model. [1]

You can expect this model to have similar performance to the non-omni version. [2]

There aren't many open-weights omni models so I consider this a big deal. I would use this model to replace the keyboard and monitor in an application while doing the heavy lifting with other tech behind the scenes. There is also a reasoning version, which might be a bit amusing in an interactive voice chat if it pronounces the thinking tokens while working through to a final answer.

1. https://huggingface.co/Qwen/Qwen2.5-Omni-7B

2. https://artificialanalysis.ai/models/qwen3-30b-a3b-instruct

replies(7): >>46221003 #>>46221130 #>>46221363 #>>46221587 #>>46222499 #>>46222576 #>>46229484 #
andy_xor_andrew ◴[] No.46221587[source]
> This is a 30B parameter MoE with 3B active parameters

Where are you finding that info? Not saying you're wrong; just saying that I didn't see that specified anywhere in the linked page, or on their HF.

replies(2): >>46222506 #>>46256154 #
1. plipt ◴[] No.46222506[source]
The link[1] at the top of their article to HuggingFace goes to some models named Qwen3-Omni-30B-A3B that were last updated in September. None of them have "Flash" in the name.

The benchmark table shows this Flash model beating their Qwen3-235B-A22B. I dont see how that is possible if it is a 30B-A3B model.

I don't see a mention of a parameter count anywhere in the article. Do you? This may not be an open weights model.

This article feels a bit deceptive

1: https://huggingface.co/collections/Qwen/qwen3-omni