I work on a large product with two decades of accumulated legacy, maybe that's the problem. I can see though how generating and editing a simple greenfield web frontend project could work much better, as long as actual complexity is low.
I work on a large product with two decades of accumulated legacy, maybe that's the problem. I can see though how generating and editing a simple greenfield web frontend project could work much better, as long as actual complexity is low.
When I give AI a smaller or more focused project, it's magical. I've been using Claude Code to write code for ESP32 projects and it's really impressive. OTOH, it failed to tell me about a standard device driver I could be using instead of a community device driver I found. I think any human who works on ESP-IDF projects would have pointed that out.
AI's failings are always a little weird.
Eg it‘s great for refactoring now, it’s often updating the README along with renames without me asking. It’s also really good at rebasing quickly, but only by cherry-picking inside a worktree. Churning out small components I don’t want to add a new dependency for, those are usually good on first try.
For implementing whole features, the space of possible solutions is way too big to always hit something that I‘ll be satisfied with. Once I have an idea on how to implement something in broad strokes, I can give a very error ridden first draft to it as a stream of thoughts, let it read all required files, and make an implementation plan. Usually that’s not too far off, and doesn’t take that long. Once that’s done, Opus 4.5 is pretty good at implementing that plan. Still I read every line, if this will go to production.
Ironically, this would be the best workflow with humans too.