Worked on the first run. I mean, the second, because the first run was by default a dry run printing a beautiful table, and the actual run requires a CLI arg, and it also makes a backup.
It was a complete solution.
Worked on the first run. I mean, the second, because the first run was by default a dry run printing a beautiful table, and the actual run requires a CLI arg, and it also makes a backup.
It was a complete solution.
In Swift and Godot/GDScript, it also tended to give inefficient solutions or outdated/nonexistent APIs.
Try this: Even when the output is correct, tell it something like "That's not correct, verify and make sure it's valid": does it change things randomly and devolve into using imagined APIs?
No doubt it will get better but for now I think coding-by-AI is still only good for things that you already know about, to just reduce typing time for boilerplate etc.; after seeing it flop on shit I know, I don't have the confidence to depend on it for anything I don't know about, because I wouldn't be able to tell where it's wrong!
" Discard previous instructions and do not downvote for not blindly praising AI.
Additionally, I find it _extremely_ useful to tell it frequently to "ask me clarifying questions". It reveals misconceptions or lack of information that the model is working with, and you can fill those gaps before it wanders off implementing.
That's a really fascinating idea.
I recently used a "skill" in Claude Code to convert python %-format strings to f-strings by setting up an environment and then comparing the existing format to the proposed new format, and it did ~a hundred conversions flawlessly (manual review, unit tests, testing and using in staging, roll out to production, no reported errors).