←back to thread

160 points riordan | 1 comments | | HN request time: 0s | source
Show context
bryanlarsen ◴[] No.45955571[source]
Baseload generation is useless in 2025. It's in the name; it's called "base load", not "base generation".

Base generation was a cost optimization. Planners noticed that load never dropped below a specific level, and that cheapest power was from a plant designed to run 100% of the time rather than one designed to turn on and off frequently. So they could reduce cost by building a mix of base and peaker generation plants.

In 2025, that's no longer the case. The cheapest power is solar & wind, which produces power intermittently. And the next cheapest power is dispatchable.

To take advantage of this cheap intermittent power, we need a way to provide power when the sun isn't shining and the wind isn't blowing. Which is provided by storage and/or peaker plants.

That's what we need. If added non-dispatchable power to that mix than we're displacing cheap solar/wind with more expensive mix, and still not eliminating the need for further storage/peaker plants.

If non-dispatchable power is significantly cheaper than storage and/or peaker power than it's useful in a modern grid. That's not the case in 2025. The next cheapest power is natural gas, and it's dispatchable. If you restrict to clean options, storage & geographical diversity is cheaper than other options. Batteries for short term storage and pumped hydro for long term storage.

replies(9): >>45956657 #>>45957289 #>>45957855 #>>45958287 #>>45958715 #>>45959254 #>>45959492 #>>45960012 #>>45961419 #
jmward01 ◴[] No.45957855[source]
The right answer is 'yes to all the above'. Yes, we need solar. Yes, we need wind. Yes, we need batteries and, yes, we should be looking at geothermal. Solar has shown us, again, how artificially holding back a technology for decades has massive costs. Investing a few billion into geothermal right now is cheap and can only lead to a more durable energy infrastructure in the future. There are all sorts of benefits to a rich ecosystem of power generation. Solar and batteries may be amazing but global supply chains can be disrupted. Similarly, having multiple solutions means that niche use cases have more options and a larger likelihood of finding an acceptable solution. So, yes to all of the above. We are big enough to try them all.
replies(3): >>45958058 #>>45958073 #>>45960057 #
iso1631 ◴[] No.45958073[source]
One thing which is needed too is spinning load, the grid depends on having enough inertia to maintain the frequency. Flywheels I assume would do that.
replies(4): >>45958123 #>>45958387 #>>45958441 #>>45958848 #
1. defrost ◴[] No.45958848[source]
Ignore the clickbait headline here: Australia’s Solar Boom Is Breaking the Grid - Or Is It?

It's a sub 15 minute actual grid engineering for lay public explainer video (I know, I'm not a video fan either)

A better duller title might be: How Australia's Grid is being adapted to Solar Boom

  00:00 Introduction
  01:23 The Problem with Too Much Solar
  03:29 Batteries Change the Economics
  05:40 What the Grid Actually Needs
  07:04 A Cautionary Tale – The 2025 Iberian Blackout
  08:21 Australia’s Secret Weapon – Experience with Weak Grids
  10:08 The Genius Technical Fix – Grid-Forming Inverters
  12:25 The Perfect Partner - Batteries
  12:58 From Mechanical to Software-Defined Stability
  13:42 Conclusion – Fixing the Grid Before It Breaks
https://www.youtube.com/watch?v=qavFbOpt4jA