←back to thread

60 points QueensGambit | 1 comments | | HN request time: 0s | source
Show context
QueensGambit ◴[] No.45683114[source]
Hi HN, OP here. I'd appreciate feedback from folks with deep model knowledge on a few technical claims in the essay. I want to make sure I'm getting the fundamentals right.

1. On o1's arithmetic handling: I claim that when o1 multiplies large numbers, it generates Python code rather than calculating internally. I don't have full transparency into o1's internals. Is this accurate?

2. On model stagnation: I argue that fundamental model capabilities (especially code generation) have plateaued, and that tool orchestration is masking this. Do folks with hands-on experience building/evaluating models agree?

3. On alternative architectures: I suggest graph transformers that preserve semantic meaning at the word level as one possible path forward. For those working on novel architectures - what approaches look promising? Are graph-based architectures, sparse attention, or hybrid systems actually being pursued seriously in research labs?

Would love to know your thoughts!

replies(10): >>45686080 #>>45686164 #>>45686265 #>>45686295 #>>45686359 #>>45686379 #>>45686464 #>>45686479 #>>45686558 #>>45686559 #
cpa ◴[] No.45686265[source]
I don't think 2 is true: when OpenAI model won a gold medal in the math olympiads, it did so without tools or web search, just pure inference. Such a feat definitely would not have happened with o1.
replies(2): >>45686389 #>>45686475 #
1. MoltenMan ◴[] No.45686389[source]
True, but aren't the math (and competitive programming) achievements a bit different? They're specific models heavily RL'd on competition math problems. Obviously still ridiculously impressive, but if you haven't done competition math or programming before it's much more memorization of techniques than you might expect and it's much easier to RL on.