The belt trick / plate trick / Dirac's string trick is nicely demonstrated in below video: https://m.youtube.com/watch?v=EgsUDby0X1M
https://en.wikipedia.org/wiki/Plate_trick
In mathematics and physics, the plate trick, also known as Dirac's string trick (after Paul Dirac, who introduced and popularized it), the belt trick, or the Balinese cup trick (it appears in the Balinese candle dance), is any of several demonstrations of the idea that rotating an object with strings attached to it by 360 degrees does not return the system to its original state, while a second rotation of 360 degrees, a total rotation of 720 degrees, does.
https://en.wikipedia.org/wiki/Anti-twister_mechanism
The anti-twister or antitwister mechanism is a method of connecting a flexible link between two objects, one of which is rotating with respect to the other, in a way that prevents the link from becoming twisted. The link could be an electrical cable or a flexible conduit.
This mechanism is intended as an alternative to the usual method of supplying electric power to a rotating device, the use of slip rings. The slip rings are attached to one part of the machine, and a set of fine metal brushes are attached to the other part. The brushes are kept in sliding contact with the slip rings, providing an electrical path between the two parts while allowing the parts to rotate about each other.
However, this presents problems with smaller devices. Whereas with large devices minor fluctuations in the power provided through the brush mechanism are inconsequential, in the case of tiny electronic components, the brushing introduces unacceptable levels of noise in the stream of power supplied. Therefore, a smoother means of power delivery is needed.
A device designed and patented in 1971 by Dale A. Adams and reported in The Amateur Scientist in December 1975, solves this problem with a rotating disk above a base from which a cable extends up, over, and onto the top of the disk. As the disk rotates the plane of this cable is rotated at exactly half the rate of the disk so the cable experiences no net twisting.
What makes the device possible is the peculiar connectivity of the space of 3D rotations, as discovered by P. A. M. Dirac and illustrated in his Plate trick (also known as the string trick or belt trick). Its covering Spin(3) group can be represented by unit quaternions, also known as versors.
https://en.wikipedia.org/wiki/3D_rotation_group
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space R³ under the operation of composition.
By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation. Owing to the above properties (along composite rotations' associative property), the set of all rotations is a group under composition.