Autoregressive LLMs don't do that either actually. Sure with one forward pass you only get one token at a time, but looking at what is happening in the latent space there are clear signs of long term planning and reasoning that go beyond just the next token.
So I don't think it's necessarily more or less similar to us than diffusion, we do say one word at a time sequentially, even if we have the bigger picture in mind.
In other words, the "recalculated" plan will be exactly the same as before, just extended with new planning at the position of each newly appended token.
Karpathy recently referred to LLMs having more "working memory" than a human, apparently referring to these unchanging internal activations as "memory", but it's an odd sort of "working memory" if you can't actually update it to reflect progress on what you are working on, or update per new information (new unexpected token having been sampled).
Where humans have a single evolving state of our memory LLMs have access to all the states of their "memories" across time, and while past state can't be changed, the new state can: This is the current token's hidden state, and to form this new state they look both at the history of previous states as well as the new information (last token having been sample, or external token from RAG or whatnot appended to the context).
This is how progress is stored.
Presumably the internal state at any given token position must also be encoding information specific to that position, as well as this evolving/current memory... So, can this be seen in the internal embeddings - are they composed of a position-dependent part that changes a lot between positions, and an evolving memory part that is largely similar between positions only changing slowly?
Are there any papers or talks discussing this ?