←back to thread

DeepSeek OCR

(github.com)
990 points pierre | 1 comments | | HN request time: 0.368s | source
Show context
krackers ◴[] No.45640720[source]
The paper is more interesting than just another VLM for OCR, they start talking about compression and stuff. E.g. there is this quote

>Our work represents an initial exploration into the boundaries of vision-text compression, investigating how many vision tokens are required to decode text tokens. The preliminary results are encouraging: DeepSeek-OCR achieves near-lossless OCR compression at approximately 10× ratios, while 20× compression still retains 60% accuracy.

(I guess you could say a picture token is worth 10 textual tokens...)

Could someone explain to a noob what the information-theoretic intuition is here? Why does this work, is it that text tokens are still too "granular"/repetitive and don't come close to the ideal entropy coding? Or is switching to vision tokens escaping the limitation of working "one word-ish at a time", allowing you to get closer to entropy (similar to the way that arithmetic encoding does compared to huffman codes)?

And then they start talking about handling long-context by literally(?) downscaling images, forming a correspondence between information loss in the textual domain and the image domain.

replies(7): >>45640731 #>>45641225 #>>45642325 #>>45642598 #>>45643765 #>>45645167 #>>45651976 #
1. ssivark ◴[] No.45645167[source]
Surely the appropriate ratio depends on the resolution of each character, relative to the size of the vision token patch? That is the only way the number of text tokens needed to describe the output of OCR can be independent of the resolution of the image (as it should).