←back to thread

DeepSeek OCR

(github.com)
990 points pierre | 1 comments | | HN request time: 0.222s | source
Show context
pietz ◴[] No.45641449[source]
My impression is that OCR is basically solved at this point.

The OmniAI benchmark that's also referenced here wasn't updated with new models since February 2025. I assume that's because general purpose LLMs have gotten better at OCR than their own OCR product.

I've been able to solve a broad range of OCR tasks by simply sending each page as an image to Gemini 2.5 Flash Lite and asking it nicely to extract the content in Markdown under some additional formatting instructions. That will cost you around $0.20 for 1000 pages in batch mode and the results have been great.

I'd be interested to hear where OCR still struggles today.

replies(23): >>45641470 #>>45641479 #>>45641533 #>>45641536 #>>45641612 #>>45641806 #>>45641890 #>>45641904 #>>45642270 #>>45642699 #>>45642756 #>>45643016 #>>45643911 #>>45643964 #>>45644404 #>>45644848 #>>45645032 #>>45645325 #>>45646756 #>>45647189 #>>45647776 #>>45650079 #>>45651460 #
1. llm_nerd ◴[] No.45642699[source]
Complex documents is where OCR struggles mightily. If you have a simple document with paragraphs of text, sure OCR is pretty solved. If you have a complex layout with figures and graphs and supporting images and asides and captions and so on (basically any paper, or even trade documents), it absolutely falls apart.

And GP LLMs are heinous at OCR. If you are having success with FL, your documents must be incredibly simple.

There has been enormous advances in OCR over the past 6 months, so the SoTa is a moving, rapidly advancing target.