←back to thread

103 points jashmota | 2 comments | | HN request time: 0.412s | source

Hey HN, We're Jash and Mahimana, cofounders of Flywheel AI (https://useflywheel.ai). We’re building a remote teleop and autonomous stack for excavators.

Here's a video: https://www.youtube.com/watch?v=zCNmNm3lQGk.

Interfacing with existing excavators for enabling remote teleop (or autonomy) is hard. Unlike cars which use drive-by-wire technology, most of the millions of excavators are fully hydraulic machines. The joysticks are connected to a pilot hydraulic circuit, which proportionally moves the cylinders in the main hydraulic circuit which ultimately moves the excavator joints. This means excavators mostly do not have an electronic component to control the joints. We solve this by mechanically actuating the joysticks and pedals inside the excavators.

We do this with retrofits which work on any excavator model/make, enabling us to augment existing machines. By enabling remote teleoperation, we are able to increase site safety, productivity and also cost efficiency.

Teleoperation by the operators enables us to prepare training data for autonomy. In robotics, training data comprises observation and action. While images and videos are abundant on the internet, egocentric (PoV) observation and action data is extremely scarce, and it is this scarcity that is holding back scaling robot learning policies.

Flywheel solves this by preparing the training data coming from our remote teleop-enabled excavators which we have already deployed. And we do this with very minimal hardware setup and resources.

During our time in YC, we did 25-30 iterations of sensor stack and placement permutations/combinations, and model hyperparams variations. We called this “evolution of the physical form of our retrofit”. Eventually, we landed on our current evolution and have successfully been able to train some levels of autonomy with only a few hours of training data.

The big takeaway was how much more important data is than optimizing hyperparams of the model. So today, we’re open sourcing 100hrs of excavator dataset that we collected using Flywheel systems on real construction sites. This is in partnership with Frodobots.ai.

Dataset: https://huggingface.co/datasets/FlywheelAI/excavator-dataset

Machine/retrofit details:

  Volvo EC380 (38 ton excavator)
  4xcamera (25fps)
  25 hz expert operator’s action data
The dataset contains observation data from 4 cameras and operator's expert action data which can be used to train imitation learning models to run an excavator autonomously for the workflows in those demonstrations, like digging and dumping. We were able to train a small autonomy model for bucket pick and place on Kubota U17 from just 6-7 hours of data collected during YC.

We’re just getting started. We have good amounts of variations in daylight, weather, tasks, and would be adding more hours of data and also converting to lerobot format soon. We’re doing this so people like you and me can try out training models on real world data which is very, very hard to get.

So please checkout the dataset here and feel free to download and use however you like. We would love for people to do things with it! I’ll be around in the thread and look forward to comments and feedback from the community!

1. jedberg ◴[] No.45366976[source]
I have a question about competition. I had a friend who was in mining about a decade ago. He told me that their mines were fully autonomous back then -- that the equipment managed itself and sent back sensor data.

Is that different than what you are doing now?

replies(1): >>45368514 #
2. jashmota ◴[] No.45368514[source]
Mining has had autonomous haulage (and to some extent excavation) for some years. They have been very tightly coupled to the individual machines, models and the quarry site.

Construction excavation workflows tend to be different and more varied (hence you would see more variations in the machines/attachments available for this industry). And so far there's no solution which just works or is plug and play. This is an attempt to solve that.

And we believe this is great time to do so due to market demands too. No way Gen Z is going to do these jobs when you can make money being delivery partner/influencer, etc. The high-certified, high-skilled workforce is going to shockingly shrink in some years.