←back to thread

468 points speckx | 1 comments | | HN request time: 0.224s | source
Show context
Aurornis ◴[] No.45302320[source]
I thought the conclusion should have been obvious: A cluster of Raspberry Pi units is an expensive nerd indulgence for fun, not an actual pathway to high performance compute. I don’t know if anyone building a Pi cluster actually goes into it thinking it’s going to be a cost effective endeavor, do they? Maybe this is just YouTube-style headline writing spilling over to the blog for the clicks.

If your goal is to play with or learn on a cluster of Linux machines, the cost effective way to do it is to buy a desktop consumer CPU, install a hypervisor, and create a lot of VMs. It’s not as satisfying as plugging cables into different Raspberry Pi units and connecting them all together if that’s your thing, but once you’re in the terminal the desktop CPU, RAM, and flexibility of the system will be appreciated.

replies(11): >>45302356 #>>45302424 #>>45302433 #>>45302531 #>>45302676 #>>45302770 #>>45303057 #>>45303061 #>>45303424 #>>45304502 #>>45304568 #
glitchc ◴[] No.45302424[source]
I did some calculations on this. Procuring a Mac Studio with the latest Mx Ultra processor and maxing out the memory seems to be the most cost effective way to break into 100b+ parameter model space.
replies(8): >>45302483 #>>45302490 #>>45302620 #>>45302698 #>>45302777 #>>45302916 #>>45302937 #>>45304489 #
GeekyBear ◴[] No.45302777[source]
Now that we know that Apple has added tensor units to the GPU cores the M5 series of chips will be using, I might be asking myself if I couldn't wait a bit.
replies(1): >>45304691 #
1. t1amat ◴[] No.45304691[source]
This is the right take. You might be able to get decent (2-3x less than a GPU rig) token generation, which is adequate, but your prompt processing speeds are more like 50-100x slower. A hardware solution is needed to make long context actually usable on a Mac.