For example, a modern ML application might need an ETL pipeline to load and harmonize data of various types (text, images, video, etc., all in different formats) from various sources (local filesystem, cloud storage, HTTP, etc.) The actual computation then must leverage many different high-level functionalities, e.g. signal/image processing, optimization, statistics, etc. All of this computation might be too big for one machine, and so the application must dispatch jobs to a compute cluster or cloud. Finally, the end results might require sophisticated visualization and organization, with a GUI and database.
There is no single language with a rich enough ecosystem that can provide literally all of the aforementioned functionality besides Python. Python's numerical computing libraries (NumPy/PyTorch/JAX etc.) all call out to C/C++/FORTRAN under the hood and are thus extremely high-performance, and for functionality they don't implement, Python's C/C++ FFIs (e.g. Python.h, NumPy C integration, PyTorch/Boost C++ integration) are not perfect, but are good enough that implementing the performance-critical portions of code in C/C++ is much easier compared to re-implementing entire ecosystems of packages in another language like Julia.