←back to thread

157 points tdhttt | 1 comments | | HN request time: 0.348s | source
Show context
pclmulqdq ◴[] No.45125831[source]
EE encompasses a lot of "engineering that takes hard math" at a professional and research level (similar to "hard CS," just different fields of math), so it is very hard to do as an undergrad, when your background in complex analysis and E&M is weak.

Early classes on circuits in EE will usually take shortcuts using known circuit structures and simplified models. The abstraction underneath the field of analog circuits is extremely leaky, so you often learn to ignore it unless you absolutely need to pay attention.

Hobbyist and undergrad projects thus usually consist of cargo culting combinations of simple circuit building blocks connected to a microcontroller of some kind. A lot of research (not in EE) needs this kind of work, but it's not necessarily glamorous. This is the same as pulling software libraries off the shelf to do software work ("showing my advisor docker"), but the software work gets more credit in modern academia because the skills are rarer and the building blocks are newer.

Plenty of cutting-edge science needs hobbyist-level EE, it's just not work in EE. Actual CS research is largely the same as EE research: very, very heavy on math and very difficult to do without studying a lot. If you compare hard EE research to basic software engineering, it makes sense that you think there's a "wall," but you're ignoring the easy EE and the hard CS.

replies(7): >>45126229 #>>45126357 #>>45126514 #>>45127402 #>>45127675 #>>45128168 #>>45128950 #
dfawcus ◴[] No.45127402[source]
Yeah - there was a massive filtering of the students between the 1st year entry, and the second year at my Uni. Largely down to people unable to handle the (not terribly) complex maths at that stage.

I knew a number of folks in the first year who were very good at practical electronics, having come in from a technician side, but simply gave up due to the heavy maths load.

It got more complex when doing Control Theory, what with Laplace and Z transforms, freq domain analysis, and the apocryphal Poles and Zeros.

Further culling ensued at that point.

replies(2): >>45128577 #>>45131315 #
1. underlipton ◴[] No.45131315[source]
I sometimes wonder if math suffers from a bit of basketball syndrome. That is, I'm sure there are dozens of potential Muggsy Bogues-esque players out there, but the game's meta continues to drift ever towards who coaches and trainers know how to coach and train, which is tall dudes.

There might be a structural issue if you have a bunch of guys coming in from the technician side, as you say, who almost all get filtered out. You might need remedial classes, a different curriculum progression, something. Or else recruitment standards/expectation-setting are wacked-out.