←back to thread

170 points PaulHoule | 1 comments | | HN request time: 0s | source
Show context
measurablefunc ◴[] No.45120049[source]
There is a formal extensional equivalence between Markov chains & LLMs but the only person who seems to be saying anything about this is Gary Marcus. He is constantly making the point that symbolic understanding can not be reduced to a probabilistic computation regardless of how large the graph gets it will still be missing basic stuff like backtracking (which is available in programming languages like Prolog). I think that Gary is right on basically all counts. Probabilistic generative models are fun but no amount of probabilistic sequence generation can be a substitute for logical reasoning.
replies(16): >>45120249 #>>45120259 #>>45120415 #>>45120573 #>>45120628 #>>45121159 #>>45121215 #>>45122702 #>>45122805 #>>45123808 #>>45123989 #>>45125478 #>>45125935 #>>45129038 #>>45130942 #>>45131644 #
Certhas ◴[] No.45120259[source]
I don't understand what point you're hinting at.

Either way, I can get arbitrarily good approximations of arbitrary nonlinear differential/difference equations using only linear probabilistic evolution at the cost of a (much) larger state space. So if you can implement it in a brain or a computer, there is a sufficiently large probabilistic dynamic that can model it. More really is different.

So I view all deductive ab-initio arguments about what LLMs can/can't do due to their architecture as fairly baseless.

(Note that the "large" here is doing a lot of heavy lifting. You need _really_ large. See https://en.m.wikipedia.org/wiki/Transfer_operator)

replies(5): >>45120313 #>>45120341 #>>45120344 #>>45123837 #>>45124441 #
measurablefunc ◴[] No.45120344[source]
What part about backtracking is baseless? Typical Prolog interpreters can be implemented in a few MBs of binary code (the high level specification is even simpler & can be in a few hundred KB)¹ but none of the LLMs (open source or not) are capable of backtracking even though there is plenty of room for a basic Prolog interpreter. This seems like a very obvious shortcoming to me that no amount of smooth approximation can overcome.

If you think there is a threshold at which point some large enough feedforward network develops the capability to backtrack then I'd like to see your argument for it.

¹https://en.wikipedia.org/wiki/Warren_Abstract_Machine

replies(3): >>45120516 #>>45121626 #>>45124764 #
skissane ◴[] No.45121626[source]
> but none of the LLMs (open source or not) are capable of backtracking even though there is plenty of room for a basic Prolog interpreter. This seems like a very obvious shortcoming to me that no amount of smooth approximation can overcome.

The fundamental autoregressive architecture is absolutely capable of backtracking… we generate next token probabilities, select a next token, then calculate probabilities for the token thereafter.

There is absolutely nothing stopping you from “rewinding” to an earlier token, making a different selection and replaying from that point. The basic architecture absolutely supports it.

Why then has nobody implemented it? Maybe, this kind of backtracking isn’t really that useful.

replies(2): >>45121703 #>>45124591 #
1. versteegen ◴[] No.45124591{4}[source]
Yes, but anyway, LLMs themselves are perfectly capable of backtracking reasoning while sampling is run forwards only, in the same way humans do: by deciding something doesn't work and trying something else. Humans DON'T time travel backwards in time and never have the erroneous thought in the first place.