←back to thread

170 points PaulHoule | 1 comments | | HN request time: 0s | source
Show context
measurablefunc ◴[] No.45120049[source]
There is a formal extensional equivalence between Markov chains & LLMs but the only person who seems to be saying anything about this is Gary Marcus. He is constantly making the point that symbolic understanding can not be reduced to a probabilistic computation regardless of how large the graph gets it will still be missing basic stuff like backtracking (which is available in programming languages like Prolog). I think that Gary is right on basically all counts. Probabilistic generative models are fun but no amount of probabilistic sequence generation can be a substitute for logical reasoning.
replies(16): >>45120249 #>>45120259 #>>45120415 #>>45120573 #>>45120628 #>>45121159 #>>45121215 #>>45122702 #>>45122805 #>>45123808 #>>45123989 #>>45125478 #>>45125935 #>>45129038 #>>45130942 #>>45131644 #
Certhas ◴[] No.45120259[source]
I don't understand what point you're hinting at.

Either way, I can get arbitrarily good approximations of arbitrary nonlinear differential/difference equations using only linear probabilistic evolution at the cost of a (much) larger state space. So if you can implement it in a brain or a computer, there is a sufficiently large probabilistic dynamic that can model it. More really is different.

So I view all deductive ab-initio arguments about what LLMs can/can't do due to their architecture as fairly baseless.

(Note that the "large" here is doing a lot of heavy lifting. You need _really_ large. See https://en.m.wikipedia.org/wiki/Transfer_operator)

replies(5): >>45120313 #>>45120341 #>>45120344 #>>45123837 #>>45124441 #
arduanika ◴[] No.45120313[source]
What hinting? The comment was very clear. Arbitrarily good approximation is different from symbolic understanding.

"if you can implement it in a brain"

But we didn't. You have no idea how a brain works. Neither does anyone.

replies(3): >>45120357 #>>45120411 #>>45121006 #
1. jjgreen ◴[] No.45121006{3}[source]
You can look at it, from the inside.