> The key thing is to develop an intuition for questions it can usefully answer vs questions that are at a level of detail where the lossiness matters
the problem is that in order to develop an intuition for questions that LLMs can answer, the user will at least need to know something about the topic beforehand. I believe that this lack of initial understanding of the user input is what can lead to taking LLM output as factual. If one side of the exchange knows nothing about the subject, the other side can use jargon and even present random facts or lossy facts which can almost guarantee to impress the other side.
> The way to solve this particular problem is to make a correct example available to it.
My question is how much effort would it take to make a correct example available for the LLM before it can output quality and useful data? If the effort I put in is more than what I would get in return, then I feel like it's best to write and reason it myself.