The goal of cryptography is to make something as close to theoretically unbreakable as possible. That means even theoretical vulnerabilities are taken seriously.
For ECC and RSA and related algorithms we have a theoretical and physically plausible pathway toward a practical machine that could break them. That means many cryptographers consider them theoretically broken even if such a machine does not exist and may not exist for a long time. The math works even if we can’t build it yet.
So it’s considered prudent to go ahead and upgrade now while no QC exists. That way if some major advance does arrive we are ready.
Nobody’s talking seriously about replacing SHA2, AES, ChaCha, etc because there is no physically plausible theoretically valid path to a machine that can break these in, say, less than many millions of years. AFAIK there is no proof that such a path does not exist but nobody has found one, hence they are considered unbroken.
Note that cryptography is not the only or even the most useful application of QC. Things like physical stimulation of quantum systems, protein folding, machine learning, etc. could be more useful. Like digital computers there’s probably a ton of uses we don’t know about because we need to tinker with the machine to figure them out.