Very unlikely to me that this design would have comparable "raw" performance to a design that implements something closer to tomasulo's algorithm. The assumption that the latency of a load will be a l1 hit is a load bearing abstraction; I can imagine scenarios where this acts as a "double jeopardy" causing scheduling to lock up because the latency was mispredicted, but one could also speculate that isn't important because the workload is already memory bound.
There's an intuition in computer architecture that designs that lean on "static" instruction scheduling mechanisms are less performant than more dynamic mechanisms for general purpose compute, but we've had decades of compiler development since itanium "proved" this. Efficient computer (or whatever their name is) is doing something cool too, it's exciting to see where this will go