1. One-sample detection is impossible. These detection methods work at the distributional level—more like a two-sample test in statistics—which means you need to collect a large amount of generated text from the same model to make the test significant. Detecting based on a short piece of generated text is theoretically impossible. For example, imagine two different Gaussian distributions: you can never be 100% certain whether a single sample comes from one Gaussian or the other, since both share the same support.
2. Adding watermarks may reduce the ability of an LLM, which is why I don’t think they will be widely adopted.
3. Consider this simple task: ask an LLM to repeat exactly what you said. Is the resulting text authored by you, or by the AI?
replies(1):