A lot of modern coding does involve programming. But it is more concerned with storage and transmission of information. Like how to reduce the symbols (in info theory parlance) required for representing information (by eliminating information redundancy), how to increase the error recovery capability of a message (by adding some information redundancy), etc. Applications include transmission encoding/decoding dats (eg: DVB-S, Trellis code), error detection and correction (eg: CRC32, FEC), lossless compression (eg: RLE, LZW), lossy compression (most audio and video formats), etc.
As you may have already figured out, it's applications are in digital communication systems, file and wire formats for various types of data, data storage systems and filesystems, compression algorithms, as part of cryptographic protocols and data formats, various types of codecs, etc.
Friedman and Wand's Essentials of Programming Languages isn't 'essential' for everyone, even for programmers, it represents the 'essential' parts of programming language theory. If you read and understand that book you can have a serious conversation with anyone on that topic.
Similarly Essential Statistical Inference would imply a book that teaches you everything you need to know about statistical inference to do meaningful work in that area.
So the claim here is, assuming you want to understand Coding theory, then you'll be in a good place to discuss it after you read this book.