I know that Rust provides some additional compile-time checks because of its stricter type system, but it doesn't come for free - it's harder to learn and arguably to read
I know that Rust provides some additional compile-time checks because of its stricter type system, but it doesn't come for free - it's harder to learn and arguably to read
Ownership/borrowing clarifies whether function arguments are given only temporarily to view during the call, or whether they're given to the function to keep and use exclusively. This ensures there won't be any surprise action at distance when the data is mutated, because it's always clear who can do that. In large programs, and when using 3rd party libraries, this is incredibly useful. Compare that to that golang, which has types for slices, but the type system has no opinion on whether data can be appended to a slice or not (what happens depends on capacity at runtime), and you can't lend a slice as a temporary read-only view (without hiding it behind an abstraction that isn't a slice type any more).
Thread safety in the type system reliably catches at compile time a class of data race errors that in other languages could be nearly impossible to find and debug, or at very least would require catching at run time under a sanitizer.
Basically, I don't need ownership, if I don't mutate things. It would be nice to have ownership as a concept, in case I do decide to mutate things, but it sucks to have to pay attention to it, when I don't mutate and to carry that around all the time in the code.
By passing values do you mean 'moving'? Like not passing reference?
So I want to move a value, but also be able to use it after moving it, because I don't mutate it in that other function, where it got moved to. So it is actually more like copying, but without making a copy in memory.
It would be good, if Rust realized, that I don't have mutating calls anywhere and just lets me use the value. When I have a mutation going on, then of course the compiler should throw error, because that would be unsafe business.
If you call `foo(&value)` then `value` remains available in your calling scope after `foo` returns. If you don't mutate `value` in foo, and foo doesn't do anything other than derive a new value from `value`, then it sounds like a shared reference works for what you're describing?
Rust makes you be explicit as to whether you want to lend out the value or give the value away, which is a design decision, and Rust chooses that the bare syntax `value` is for moving and the `&value` syntax is for borrowing. Perhaps you're arguing that a shared immutable borrow should be the default syntax.
Apologies if I'm misunderstanding!