This is silly, but also begs the sillier question why we aren't bioengineering plants to produce rocket fuel
This is silly, but also begs the sillier question why we aren't bioengineering plants to produce rocket fuel
Alternatively, you can break it down into ethanol, which has been used as liquid rocket fuel since at least the first half of the '40s.
This classic book tells the story of liquid rocket fuel development
https://library.sciencemadness.org/library/books/ignition.pd...
You'd think that you could mix any of a wide range of fuels with a wide range of oxidizers and get a good rocket fuel but it does not really work that way, most combinations are pretty awful, including the ethanol + O2 used in the V2. There was a time when there was interest in "storable" liquid propellants but once solid propellants reached this level of maturity
https://en.wikipedia.org/wiki/LGM-30_Minuteman
those were obsolete.
It is hard to beat H2+oxygen or hydrocarbons+oxygen if you pick the right hydrocarbons (rocket kerosene isn't quite the kerosene you use in a lamp)
I'm not sure if ethylene is really that good of a rocket fuel. In the context of a space economy I see it as a "reactive carbon" substance which is easy to make other things out of, say,
https://en.wikipedia.org/wiki/Polyethylene
in the sense that glucose is reactive carbon you can build structural carbohydrates and all sorts of biological molecules out of. There is talk about SpaceX establishing a methane economy on Mars, methane is definitely an easy to synthesize rocket fuel but it not very reactive and not on the path to making other things you might want.