Second, the x86 platform has a lot of legacy, and each operation on x86 is translated from an x86 instruction into RISC-like micro-ops. This is an inherent penalty that Apple doesn't have pay, and it is also why Rosetta 2 can achieve "near native" x86 performance; both platform translate the x86 instructions.
Third, there are some architectural differences even if the instruction decoding steps are removed from the discussion. Apple Silicon has a huge out-of-order buffer, and it's 8-wide vs x86 4-wide. From there, the actual logic is different, the design is different, and the packaging is different. AMD's Ryzen AI Max 300 series does get close to Apple by using many of the same techniques like unified memory and tossing everything onto the package, where it does lose is due to all of the other differences.
In the end, if people want crazy efficiency Apple is a great answer and delivers solid performance. If people want the absolute highest performance, then something like Ryzen Threadripper, EPYC, or even the higher-end consumer AMD chips are great choices.