←back to thread

447 points stephenheron | 1 comments | | HN request time: 0s | source

Hi,

My daily workhorse is a M1 Pro that I purchased on release date, It has been one of the best tech purchases I have made, even now it really deals with anything I throw at it. My daily work load is regularly having a Android emulator, iOS simulator and a number of Dockers containers running simultaneously and I never hear the fans, battery life has taken a bit of a hit but it is still very respectable.

I wanted a new personal laptop, and I was debating between a MacBook Air or going for a Framework 13 with Linux. I wanted to lean into learning something new so went with the Framework and I must admit I am regretting it a bit.

The M1 was released back in 2020 and I bought the Ryzen AI 340 which is one of the newest 2025 chips from AMD, so AMD has 5 years of extra development and I had expected them to get close to the M1 in terms of battery efficiency and thermals.

The Ryzen is using a TSMC N4P process compared to the older N5 process, I managed to find a TSMC press release showing the performance/efficiency gains from the newer process: “When compared to N5, N4P offers users a reported +11% performance boost or a 22% reduction in power consumption. Beyond that, N4P can offer users a 6% increase in transistor density over N5”

I am sorely disappointed, using the Framework feels like using an older Intel based Mac. If I open too many tabs in Chrome I can feel the bottom of the laptop getting hot, open a YouTube video and the fans will often spin up.

Why haven’t AMD/Intel been able to catch up? Is x86 just not able to keep up with the ARM architecture? When can we expect a x86 laptop chip to match the M1 in efficiency/thermals?!

To be fair I haven’t tried Windows on the Framework yet it might be my Linux setup being inefficient.

Cheers, Stephen

Show context
ben-schaaf ◴[] No.45023206[source]
Battery efficiency comes from a million little optimizations in the technology stack, most of which comes down to using the CPU as little as possible. As such the instruction set architecture and process node aren't usually that important when it comes to your battery life.

If you fully load the CPU and calculate how much energy a AI340 needs to perform a fixed workload and compare that to a M1 you'll probably find similar results, but that only matters for your battery life if you're doing things like blender renders, big compiles or gaming.

Take for example this battery life gaming benchmark for an M1 Air: https://www.youtube.com/watch?v=jYSMfRKsmOU. 2.5 hours is about what you'd expect from an x86 laptop, possibly even worse than the fw13 you're comparing here. But turn down the settings so that the M1 CPU and GPU are mostly idle, and bam you get 10+ hours.

Another example would be a ~5 year old mobile qualcomm chip. It's a worse process node than an AMD AI340, much much slower and significantly worse performance per watt, and yet it barely gets hot and sips power.

All that to say: M1 is pretty fast, but the reason the battery life is better has to do with everything other than the CPU cores. That's what AMD and Intel are missing.

> If I open too many tabs in Chrome I can feel the bottom of the laptop getting hot, open a YouTube video and the fans will often spin up.

It's a fairly common issue on Linux to be missing hardware acceleration, especially for video decoding. I've had to enable gpu video decoding on my fw16 and haven't noticed the fans on youtube.

replies(14): >>45023243 #>>45023603 #>>45023693 #>>45023904 #>>45023939 #>>45023972 #>>45024390 #>>45024405 #>>45024494 #>>45025515 #>>45026011 #>>45026727 #>>45026857 #>>45027696 #
throwup238 ◴[] No.45023243[source]
> All that to say: M1 is pretty fast, but the reason the battery life is better has to do with everything other than the CPU cores. That's what AMD and Intel are missing.

A good demonstration is the Android kernel. By far the biggest difference between it and the stock Linux kernel is power management. Many subsystems down to the process scheduler are modified and tuned to improve battery life.

replies(3): >>45023540 #>>45026742 #>>45027079 #
qcnguy ◴[] No.45023540[source]
And the more relevant case for laptops is macOS, which is heavily optimized for battery life and power draw in ways that Linux just isn't, neither is Windows. A lot of the problems here can't actually be fixed by intel, amd, or anyone designing x86 laptops because getting that level of efficiency requires the ability to strongly lead the app developer community. It also requires highly competent operating system developers focusing on the issue for a very long time, and being able to co-design the operating system, firmware and hardware together. Microsoft barely cares about Windows anymore, the Linux guys only care about servers since forever, and that leaves Apple alone in the market. I doubt anything will change anytime soon.
replies(3): >>45023591 #>>45026116 #>>45029126 #
john01dav ◴[] No.45023591[source]
Power efficiency is very important to servers too, for cost instead of for battery life. But, energy is energy. Thus, I suspect that the power draw is in userland systems that are specific to desktop, like desktop environments. Thus, using a simpler desktop environment may be worthwhile.
replies(3): >>45024240 #>>45024646 #>>45034173 #
1. qcnguy ◴[] No.45024646[source]
It's important but not relative to performance. Perf/watt thinking has a much longer history in mobile and laptop spaces. Even in servers most workloads haven't migrated to ARM.