←back to thread

Go is still not good

(blog.habets.se)
644 points ustad | 1 comments | | HN request time: 0.214s | source
Show context
blixt ◴[] No.44983245[source]
I've been using Go more or less in every full-time job I've had since pre-1.0. It's simple for people on the team to pick up the basics, it generally chugs along (I'm rarely worried about updating to latest version of Go), it has most useful things built in, it compiles fast. Concurrency is tricky but if you spend some time with it, it's nice to express data flow in Go. The type system is most of the time very convenient, if sometimes a bit verbose. Just all-around a trusty tool in the belt.

But I can't help but agree with a lot of points in this article. Go was designed by some old-school folks that maybe stuck a bit too hard to their principles, losing sight of the practical conveniences. That said, it's a _feeling_ I have, and maybe Go would be much worse if it had solved all these quirks. To be fair, I see more leniency in fixing quirks in the last few years, like at some point I didn't think we'd ever see generics, or custom iterators, etc.

The points about RAM and portability seem mostly like personal grievances though. If it was better, that would be nice, of course. But the GC in Go is very unlikely to cause issues in most programs even at very large scale, and it's not that hard to debug. And Go runs on most platforms anyone could ever wish to ship their software on.

But yeah the whole error / nil situation still bothers me. I find myself wishing for Result[Ok, Err] and Optional[T] quite often.

replies(18): >>44983384 #>>44983427 #>>44983465 #>>44983479 #>>44983531 #>>44983616 #>>44983802 #>>44983872 #>>44984433 #>>44985251 #>>44985721 #>>44985839 #>>44986166 #>>44987302 #>>44987396 #>>45002271 #>>45002492 #>>45018751 #
xyzzyz ◴[] No.44983427[source]
Go was designed by some old-school folks that maybe stuck a bit too hard to their principles, losing sight of the practical conveniences.

I'd say that it's entirely the other way around: they stuck to the practical convenience of solving the problem that they had in front of them, quickly, instead of analyzing the problem from the first principles, and solving the problem correctly (or using a solution that was Not Invented Here).

Go's filesystem API is the perfect example. You need to open files? Great, we'll create

  func Open(name string) (*File, error)
function, you can open files now, done. What if the file name is not valid UTF-8, though? Who cares, hasn't happen to me in the first 5 years I used Go.
replies(10): >>44983477 #>>44983490 #>>44983605 #>>44984231 #>>44984419 #>>44985099 #>>44985582 #>>44985985 #>>44988513 #>>44993106 #
nasretdinov ◴[] No.44983477[source]
Note that Go strings can be invalid UTF-8, they dropped panicking on encountering an invalid UTF string before 1.0 I think
replies(1): >>44983502 #
xyzzyz ◴[] No.44983502[source]
This also epitomizes the issue. What's the point of having `string` type at all, if it doesn't allow you to make any extra assumptions about the contents beyond `[]byte`? The answer is that they planned to make conversion to `string` error out when it's invalid UTF-8, and then assume that `string`s are valid UTF-8, but then it caused problems elsewhere, so they dropped it for immediate practical convenience.
replies(6): >>44983745 #>>44983751 #>>44983838 #>>44983858 #>>44984463 #>>45024580 #
0x000xca0xfe ◴[] No.44983838[source]
Why not use utf8.ValidString in the places it is needed? Why burden one of the most basic data types with highly specific format checks?

It's far better to get some � when working with messy data instead of applications refusing to work and erroring out left and right.

replies(1): >>44986366 #
const_cast ◴[] No.44986366[source]
IMO utf8 isn't a highly specific format, it's universal for text. Every ascii string you'd write in C or C++ or whatever is already utf8.

So that means that for 99% of scenarios, the difference between char[] and a proper utf8 string is none. They have the same data representation and memory layout.

The problem comes in when people start using string like they use string in PHP. They just use it to store random bytes or other binary data.

This makes no sense with the string type. String is text, but now we don't have text. That's a problem.

We should use byte[] or something for this instead of string. That's an abuse of string. I don't think allowing strings to not be text is too constraining - that's what a string is!

replies(2): >>44986603 #>>44988742 #
kragen ◴[] No.44988742[source]
The approach you are advocating is the approach that was abandoned, for good reasons, in the Unix filesystem in the 70s and in Perl in the 80s.

One of the great advances of Unix was that you don't need separate handling for binary data and text data; they are stored in the same kind of file and can be contained in the same kinds of strings (except, sadly, in C). Occasionally you need to do some kind of text-specific processing where you care, but the rest of the time you can keep all your code 8-bit clean so that it can handle any data safely.

Languages that have adopted the approach you advocate, such as Python, frequently have bugs like exception tracebacks they can't print (because stdout is set to ASCII) or filenames they can't open when they're passed in on the command line (because they aren't valid UTF-8).

replies(1): >>44992420 #
1. kragen ◴[] No.44992420[source]
As I demonstrated in https://news.ycombinator.com/item?id=44991638, it's easy to run into this problem in, for example, Rust.