If they can't get safety right at the design stage, they'll never get it right. We already have D and Zig in this space.
If they can't get safety right at the design stage, they'll never get it right. We already have D and Zig in this space.
As to "getting it right" - things are not so simple. The emphasis on memory-safety soundness is based on some empirical hypotheses, some better founded than others, and it's unclear what "getting it right" means.
From a software correctness perspective, the road to sound memory safety is as follows: 1. We want to reduce the amount of costly bugs in software as cheaply as possible, 2. Memory unsafe operations are a common cause of many costly bugs, 3. Some or all memory bugs can be eliminated cheaply with sound language guarantees.
The problem is that 1. memory safety refers to several properties that don't all contribute equally to correctness (e.g. out-of-bounds access causes more serious bugs than use-after-free [1]), and 2. soundly guaranteeing different memory safety properties has different costs. It gets more complicated than that (e.g. there are also unsound techniques that have proven very effective to consider), but that's the overview.
It is, therefore, as of yet unclear which memory safety properties are worth it to soundly guarantee in the language, and the answer may depend on the language's other goals (and there must be other goals that are at least as important, because the empty language guarantees not only all memory safety properties but all (safety [2]) correctness properties, yet nobody uses it as it's useless, while a language like ATS can be used to write many useful programs, but few use it because it's just too costly to use well). The goal is always to find the right balance.
For example, Java soundly guarantees lack of use-after-free at the cost of increased memory footprint; that may be "getting it right" for some programs but not all. Rust soundly guarantees lack of use-after-free at the cost of imposing strong and elaborate typesystem constraints (that, as is often the case, are more constraining than the property they guarantee); that, too, may be "getting it right" for some programs, though not all. Zig guarantees lack of out-of-bounds access in a simple language at the cost of not guaranteeing lack of use-after-free, and that may also be "getting it right" for some programs but not all.
So what "getting it right" means always depends on constraints other than safety (Rust and Zig want to consume less memory than Java; Java and Zig want to be simpler than Rust; Java and Rust want to guarantee more memory safety properties than Zig). If Carbon wants to be more interoperable with C++ than Java, Rust, or Zig, then it will have to figure out what "getting it right" means for Carbon.
[1]: https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
[2]: https://en.wikipedia.org/wiki/Safety_and_liveness_properties