Yes, the open-models have surpassed my expectations in both quality and speed of release. For a bit of context, when chatgpt launched in Dec22, the "best" open models were GPT-J(~6-7B) and GPT-neoX (~22B?). I actually had an app running live, with users, using gpt-j for ~1 month. It was a pain. The quality was abysmal, there was no instruction following (you had to start your prompt like a story, or come up with a bunch of examples and hope the model will follow along) and so on.
And then something happened, LLama models got "leaked" (I still think it was a on purpose leak - don't sue us, we never meant to release, etc), and the rest is history. With L1 we got lots of optimisations like quantised models, fine-tuning and so on, L2 really saw fine-tuning go off (most of the fine-tunes were better than what meta released), we got alpaca showing off LoRA, and then a bunch of really strong models came out (mistrals, mixtrals, L3, gemmas, qwens, deepseeks, glms, granites, etc.)
By some estimations the open models are ~6mo behind what SotA labs have released. (note that doesn't mean the labs are releasing their best models, it's likely they keep those in house to use on next runs data curation, synthetic datasets, for distilling, etc). Being 6mo behind is NUTS! I never in my wildest dreams believed we'll be here. In fact I thought it would take ~2years to reach gpt3.5 levels. It's really something insane that we get to play with these models "locally", fine-tune them and so on.