We went from chatgpt's "oh, look, it looks like python code but everything is wrong" to "here's a full stack boilerplate app that does what you asked and works in 0-shot" inside 2 years. That's the kicker. And the sauce isn't just in the training set, models now do post-training and RL and a bunch of other stuff to get to where we are. Not to mention the insane abilities with extended context (first models were 2/4k max), agentic stuff, and so on.
These kinds of comments are really missing the point.
To show that LLM actually can provide value for one-shot programming, you need to find a problem that there's no fully working sample code available online. I'm not trying to say that LLM couldn't to that. But just because LLM can come up with a perfectly-working Space Invaders doesn't mean that it could do that.
He's using AI with note taking apps for meetings to enhance notes and flush out technology ideas at a higher level, then refining those ideas into working experiments.
It's actually impressive to see. My personal experience has been far more disappointing to say the least. I can't speak to the code quality, consistency or even structure in terms of most people being able to maintain such applications though. I've asked to shadow him through a few of his vibe coding sessions to see his workflow. It feels rather alien to me, again my experience is much more disappointing in having to correct AI errors.
I've worked with him off and on for years from simulating aircraft diagnostics hardware to incident command simulation and setting up core infrastructure for F100 learning management backends.