We went from chatgpt's "oh, look, it looks like python code but everything is wrong" to "here's a full stack boilerplate app that does what you asked and works in 0-shot" inside 2 years. That's the kicker. And the sauce isn't just in the training set, models now do post-training and RL and a bunch of other stuff to get to where we are. Not to mention the insane abilities with extended context (first models were 2/4k max), agentic stuff, and so on.
These kinds of comments are really missing the point.
Even then, when you start to build up complexity within a codebase - the results have often been worse than "I'll start generating it all from scratch again, and include this as an addition to the initial longtail specification prompt as well", and even then... it's been a crapshoot.
I _want_ to like it. The times where it initially "just worked" felt magical and inspired me with the possibilities. That's what prompted me to get more engaged and use it more. The reality of doing so is just frustrating and wishing things _actually worked_ anywhere close to expectations.
I am definitely at a point where I am more productive with it, but it took a bunch of effort.
That explains a lot about Django that the author is allergic to man pages lol
... on line 3,218: https://gist.github.com/simonw/6fc05ea7392c5fb8a5621d65e0ed0...
(I am very confident I am not the only person who has been deterred by ffmpeg's legendarily complex command-line interface. I feel no shame about this at all.)
The more I've used it, the more I've disliked how poor the results it's produced, and the more I've realised I would have been better served by doing it myself and following a methodical path for things that I didn't have experience with.
It's easier to step through a problem as I'm learning and making small changes than an LLM going "It's done, and production ready!" where it just straight up doesn't work for 101 different tiny reasons.
Sure, use the LLM to get over the initial hump. But ffmpeg's no exception to the rule that LLM's produce subpar code. It's worth spending a couple minutes reading the docs to understand what it did so you can do it better, and unassisted, next time.
But if you approach ffmpeg from the perspective of "I know this is possible", you are always correct, and can almost always reach the "how" in a handful of minutes.
Whether that's worth it or not, will vary. :)
*nix man pages are the same: if you already know which tool can solve your problem, they're easy to use. But you have to already have a shortlist of tools that can solve your problem, before you even know which man pages to read.
But this does remind me of a previous co-worker. Wrote something to convert from a custom data store to a database, his version took 20 minutes on some inputs. Swore it couldn't possibly be improved. Obviously ridiculous because it didn't take 20 minutes to load from the old data store, nor to load from the new database. Over the next few hours of looking at very mediocre code, I realised it was doing an unnecessary O(n^2) check, confirmed with the CTO it wasn't business-critical, got rid of it, and the same conversion on the same data ran in something like 200ms.
Over a decade before LLMs.
That's what I've done with my ffmpeg LLM queries, anyway - can't speak for simonw!
Meanwhile I've spent the past two years constantly building and implementing things I never would have done because of the reduction in friction LLM assistance gives me.
I wrote about this first two years ago - AI-enhanced development makes me more ambitious with my projects - https://simonwillison.net/2023/Mar/27/ai-enhanced-developmen... - when I realized I was hacking on things with tech like AppleScript and jq that I'd previously avoided.
It's hard to measure the productivity boost you get from "wouldn't have built that thing" to "actually built that thing".
Niche reference, I like it.
But… I only hear of scammers who say, and psychosis sufferers who think, LLMs are *already* that competent.
Future AI? Sure, lots of sane-seeming people also think it could go far beyond us. Special purpose ones have in very narrow domains. But current LLMs are only good enough to be useful and potentially economically disruptive, they're not even close to wildly superhuman like Stockfish is.
ChatGPT will get better at chess over time. Stockfish will not get better at anything except chess. That's kind of a big difference.
• https://stackoverflow.com/questions/10957412/fastest-way-to-...
• https://superuser.com/questions/984850/linux-how-to-extract-...
• https://www.aleksandrhovhannisyan.com/notes/video-cli-cheat-...
• https://www.baeldung.com/linux/ffmpeg-extract-video-frames
• https://ottverse.com/extract-frames-using-ffmpeg-a-comprehen...
Search engines have been able to translate "vague natural language queries" into search results for a decade, now. This pre-existing infrastructure accounts for the vast majority of ChatGPT's apparent ability to find answers.
Oddly, LLMs got worse at specifically chess: https://dynomight.net/chess/
But even to the general point, there's absolutely no agreement how much better the current architectures can ultimately get, nor how quickly they can get there.
Do they have potential for unbounded improvements, albeit at exponential cost for each linear incremental improvement? Or will they asymptomatically approach someone with 5 years experience, 10 years experience, a lifetime of experience, or a higher level than any human?
If I had to bet, I'd say current models have an asymptomatic growth converging to a merely "ok" performance; and separately claim that even if they're actually unbounded with exponential cost for linear returns, we can't afford the training cost needed to make them act like someone with even just 6 years professional experience in any given subject.
Which is still a lot. Especially as it would be acting like it had about as much experience in every other subject at the same time. Just… not a literal Ahura Mazda.
(Shrug) People with actual money to spend are betting twelve figures that you're wrong.
Should be fun to watch it shake out from up here in the cheap seats.
For "pretty good", it would be worth 14 figures, over two years. The global GDP is 14 figures. Even if this only automated 10% of the economy, it pays for itself after a decade.
For "Ahura Mazda", it would easily be worth 16 figures, what with that being the principal God and god of the sky in Zoroastrianism, and the only reason it stops at 16 is the implausibility of people staying organised for longer to get it done.
Not comparable and I fail to see why going through Google's ads/results would be better?
I don't think most people read the man pages top to bottom. And even if they did, then for as much grief as you're giving ffmpeg, llm has an even larger burden... no man page and the docs weigh in at over 8k lines.
I get the general point that ffmpeg is a powerful, complex tool... but this is a weird fight to pick.
I did not suggest using Google Search (the company's on record as deliberately making Google Search worse), but there are other search engines. My preferred search engines don't do the fancy "interpret natural language queries" pre-processing, because I'm quite good at doing that in my head and often want to research niche stuff, but there are many still-decent search engines that do, and don't have ads in the results.
Heck, you can even pay for a good search engine! And you can have it redirect you to the relevant section of the top search result automatically: Google used to call this "I'm feeling lucky!" (although it was before URI text fragments, so it would just send you to the top of the page). All the properties you're after, much more cheaply, and you keep the information about provenance, and your answer is more-reliably accurate.
Alas instead of correct and easy solutions to problems we are focused on sci-fi robot assitant bullshit.
... but those "people with actual money to spend" have burned money on fads before. Including on "AI", several times before the current hysterics.
If you're a good actor/psychologist, it's probably a good business model to figure out how to get VC money and how to justify your startup failing so they give you money for the next startup.
ffmpeg -ss 00:00:13:00 -i myvideo.avi -frames:v 1 myimage.jpeg
Because this is on stack overflow and it took maybe one second to find.
I've found reading the man page for a tool is usually a better way to learn what a tool can do for you now and also in the future.
Agreed on all fronts. jq and AppleScript are a total syntax mystery to me, but now I use them all the times since claude code has figured them out.
It's so powerful knowing the shape of a solution on not having to care about the details.