←back to thread

360 points Eduard | 1 comments | | HN request time: 0.001s | source
Show context
BurningFrog ◴[] No.44565671[source]
I've always thought the event horizon for a black hole has to be spherical.

But my physics intuition tells me that as two of them merge, the resulting BH should have a "peanut" shape, at least initially.

And maybe it can keep having an irregular shape, depending on the mass distribution inside it?

replies(9): >>44565698 #>>44565706 #>>44565738 #>>44568728 #>>44568876 #>>44569143 #>>44569232 #>>44569508 #>>44571532 #
itishappy ◴[] No.44565698[source]
It's only spherical in a Schwarzschild (non-rotating) black hole. A rotating black hole is called a Kerr black hole, and stuff gets weird, such as there being an oblate event horizon, a weird outer horizon called an ergosphere where spacetime gets dragged along such that it's impossible to stand still and you can accelerate objects using the black hole, a weirder inner horizon called the Cauchy horizon where time travel is possible, and a singularity in the shape of a ring. Your intuition is correct that during a merger it would be weirder still.

https://en.wikipedia.org/wiki/Kerr_metric

https://arxiv.org/pdf/0706.0622

https://en.wikipedia.org/wiki/Ergosphere

https://en.wikipedia.org/wiki/Cauchy_horizon

Edit: Updated the bit about about horizons as I research a bit more. It's complicated, and I'm still not positive I have it exactly right, but I think it's now as good as I can get it.

replies(3): >>44565849 #>>44565896 #>>44566444 #
TMEHpodcast ◴[] No.44566444[source]
No matter how chaotic the merger looks, the event horizon must asymptotically become either spherical (Schwarzschild) or oblate (Kerr). The mass distribution inside doesn’t change this, general relativity doesn’t allow static “lumpy” horizons.

It’s wild how much happens in those milliseconds though. Numerical relativity papers like the one you shared from arxiv.org show the horizon “sloshing” before it stabilizes.

replies(2): >>44566732 #>>44569805 #
geysersam ◴[] No.44569805[source]
When water sloshes it ejects small droplets. Can the event horizon eject black hole droplets during a violent merger event?
replies(1): >>44570697 #
1. Thiez ◴[] No.44570697{3}[source]
It cannot. The event horizon by definition prevents mass and energy from leaving (ignoring the exception of Hawking radiation here). I'm assuming your "black hole droplet" would be a tiny black hole? But if you could remove a little chunk from the black hole then you've effectively taken mass out of it, which is impossible.

It is even the case that once two black holes have overlapping event horizons (so they "touch" in a way) they can't stop touching. So two black holes can zip past one another at a small distance, but if they high-five they can't stop merging.