←back to thread

533 points andy99 | 1 comments | | HN request time: 0.254s | source
Show context
isusmelj ◴[] No.44536509[source]
I hope they do well. AFAIK they’re training or finetuning an older LLaMA model, so performance might lag behind SOTA. But what really matters is that ETH and EPFL get hands-on experience training at scale. From what I’ve heard, the new AI cluster still has teething problems. A lot of people underestimate how tough it is to train models at this scale, especially on your own infra.

Disclaimer: I’m Swiss and studied at ETH. We’ve got the brainpower, but not much large-scale training experience yet. And IMHO, a lot of the “magic” in LLMs is infrastructure-driven.

replies(5): >>44536696 #>>44536809 #>>44537201 #>>44539869 #>>44541746 #
1. alfalfasprout ◴[] No.44537201[source]
The infra does become pretty complex to get a SOTA LLM trained. People assume it's as simple as loading up the architecture and a dataset + using something like Ray. There's a lot that goes into designing the dataset, the eval pipelines, the training approach, maximizing the use of your hardware, dealing with cross-node latency, recovering from errors, etc.

But it's good to have more and more players in this space.