←back to thread

688 points dheerajvs | 1 comments | | HN request time: 0.209s | source
Show context
simonw ◴[] No.44523442[source]
Here's the full paper, which has a lot of details missing from the summary linked above: https://metr.org/Early_2025_AI_Experienced_OS_Devs_Study.pdf

My personal theory is that getting a significant productivity boost from LLM assistance and AI tools has a much steeper learning curve than most people expect.

This study had 16 participants, with a mix of previous exposure to AI tools - 56% of them had never used Cursor before, and the study was mainly about Cursor.

They then had those 16 participants work on issues (about 15 each), where each issue was randomly assigned a "you can use AI" v.s. "you can't use AI" rule.

So each developer worked on a mix of AI-tasks and no-AI-tasks during the study.

A quarter of the participants saw increased performance, 3/4 saw reduced performance.

One of the top performers for AI was also someone with the most previous Cursor experience. The paper acknowledges that here:

> However, we see positive speedup for the one developer who has more than 50 hours of Cursor experience, so it's plausible that there is a high skill ceiling for using Cursor, such that developers with significant experience see positive speedup.

My intuition here is that this study mainly demonstrated that the learning curve on AI-assisted development is high enough that asking developers to bake it into their existing workflows reduces their performance while they climb that learing curve.

replies(33): >>44523608 #>>44523638 #>>44523720 #>>44523749 #>>44523765 #>>44523923 #>>44524005 #>>44524033 #>>44524181 #>>44524199 #>>44524515 #>>44524530 #>>44524566 #>>44524631 #>>44524931 #>>44525142 #>>44525453 #>>44525579 #>>44525605 #>>44525830 #>>44525887 #>>44526005 #>>44526996 #>>44527368 #>>44527465 #>>44527935 #>>44528181 #>>44528209 #>>44529009 #>>44529698 #>>44530056 #>>44530500 #>>44532151 #
1. bc1000003 ◴[] No.44524181[source]
"My intiution is that..." - AGREED.

I've found that there are a couple of things you need to do to be very efficient.

- Maintain an architecture.md file (with AI assistance) that answers many of the questions and clarifies a lot of the ambiguity in the design and structure of the code.

- A bootstrap.md file(s) is also useful for a lot of tasks.. having the AI read it and start with a correct idea about the subject is useful and a time saver for a variety of kinds of tasks.

- Regularly asking the AI to refactor code, simplify it, modularize it - this is what the experienced dev is for. VIBE coding generally doesn't work as AI's tend to write messy non-modular code unless you tell them otherwise. But if you review code, ask for specific changes.. they happily comply.

- Read the code produced, and carefully review it. And notice and address areas where there are issues, have the AI fix all of these.

- Take over when there are editing tasks you can do more efficiently.

- Structure the solution/architecture in ways that you know the AI will work well with.. things it knows about.. it's general sweet spots.

- Know when to stop using the AI and code it yourself.. particuarly when the AI has entered the confusion doom loop. Wasting time trying to get the AI to figure out what it's never going to is best used just fixing it yourself.

- Know when to just not ever try to use AI. Intuitively you know there's just certain code you can't trust the AI to safely work on. Don't be a fool and break your software.

----

I've found there's no guarantee that AI assistance will speed up any one project (and in some cases slow it down).. but measured cross all tasks and projects, the benefits are pretty substantial. That's probably others experience at this point too.