←back to thread

353 points dmazin | 1 comments | | HN request time: 0.44s | source
Show context
jillesvangurp ◴[] No.44518778[source]
The article doesn't mention a technology that deserves some attention because it counters the biggest and most obvious deficiency in solar: the sun doesn't always shine.

That technology is cables. Cables allow us to move energy over long distances. And with HVCD cables that can mean across continents, oceans, time zones, and climate regions. The nice things about cables is that they are currently being underutilized. They are designed to have enough capacity so that the grid continues to function at peak demand. Off peak, there is a lot of under utilized cable capacity. An obvious use for that would be transporting power to wherever batteries need to be re-charged from wherever there is excess solar/wind power. And cables can work both ways. So import when there's a shortage, export when there's a surplus.

And that includes the rapidly growing stock of batteries that are just sitting there with an average charge state close to more or less fully charged most of the time. We're talking terawatt hours of power. All you need to get at that is cables.

Long distance cables will start moving non trivial amounts of renewable power around as we start executing on plans to e.g. connect Moroccan solar with the UK, Australian solar with Singapore, east coast US to Europe, etc. There are lots of cable projects stuck in planning pipelines around the world. Cables can compensate for some of the localized variations in energy productions caused by seasonal effects, weather, or day/night cycles.

For the rest, we have nuclear, geothermal, hydro, and a rapidly growing stock of obsolete gas plants that we might still turn on on a rainy day. I think anyone still investing in gas plants will need a reality check: mothballed gas plant aren't going to be very profitable. But we'll keep some around for decades to come anyway.

replies(16): >>44518828 #>>44518835 #>>44518839 #>>44519259 #>>44519263 #>>44519351 #>>44519551 #>>44519755 #>>44519815 #>>44519979 #>>44522132 #>>44523131 #>>44523534 #>>44523901 #>>44528148 #>>44545508 #
kragen ◴[] No.44518839[source]
Plausible alternatives to cables include ships full of synthetic diesel, ships full of iron, ships full of aluminum, or ships full of magnesium. Inside China HVDC cables are indeed carrying solar power across the continent, but the Netherlands have not managed to erect any yet. Cables provide efficient JIT power delivery, but they're vulnerable to precision-guided missiles, which Ukrainians are 3-D printing in their basements by the million, so the aluminum-air battery may return to commercial use.
replies(7): >>44518977 #>>44518993 #>>44519731 #>>44519860 #>>44520236 #>>44521608 #>>44532689 #
lukan ◴[] No.44518993[source]
Ships carrying energy are a pretty easy explosive target as well.

Local ressilence is needed in any case and mass produced batteries can provide that safety.

replies(3): >>44520511 #>>44524024 #>>44524168 #
1. kragen ◴[] No.44524024[source]
Yes, it's easy to imagine cases where people go around sinking ships; narcosubs, Red Sea oil shipping, and Russian warships in the Black Sea are of course dealing with that threat currently, but as hostilities escalate it's likely to increase. But energy in the form of shipped fuel intrinsically provides some minimal level of such local resilience—for it to work, you need at least a stockpile of fuel big enough to last until the next ship is expected to unload, which is orders of magnitude longer than the milliseconds before a cable cut affects you—and can provide arbitrarily large amounts of it.

The metal fuels in particular have the merit that you can use them in precisely such mass-produced batteries rather than to produce thermal power. As I alluded to in my grandparent comment, aluminum-air batteries were mass-produced in the 01960s.