←back to thread

A non-anthropomorphized view of LLMs

(addxorrol.blogspot.com)
475 points zdw | 1 comments | | HN request time: 0s | source
Show context
Al-Khwarizmi ◴[] No.44487564[source]
I have the technical knowledge to know how LLMs work, but I still find it pointless to not anthropomorphize, at least to an extent.

The language of "generator that stochastically produces the next word" is just not very useful when you're talking about, e.g., an LLM that is answering complex world modeling questions or generating a creative story. It's at the wrong level of abstraction, just as if you were discussing an UI events API and you were talking about zeros and ones, or voltages in transistors. Technically fine but totally useless to reach any conclusion about the high-level system.

We need a higher abstraction level to talk about higher level phenomena in LLMs as well, and the problem is that we have no idea what happens internally at those higher abstraction levels. So, considering that LLMs somehow imitate humans (at least in terms of output), anthropomorphization is the best abstraction we have, hence people naturally resort to it when discussing what LLMs can do.

replies(18): >>44487608 #>>44488300 #>>44488365 #>>44488371 #>>44488604 #>>44489139 #>>44489395 #>>44489588 #>>44490039 #>>44491378 #>>44491959 #>>44492492 #>>44493555 #>>44493572 #>>44494027 #>>44494120 #>>44497425 #>>44500290 #
grey-area ◴[] No.44487608[source]
On the contrary, anthropomorphism IMO is the main problem with narratives around LLMs - people are genuinely talking about them thinking and reasoning when they are doing nothing of that sort (actively encouraged by the companies selling them) and it is completely distorting discussions on their use and perceptions of their utility.
replies(13): >>44487706 #>>44487747 #>>44488024 #>>44488109 #>>44489358 #>>44490100 #>>44491745 #>>44493260 #>>44494551 #>>44494981 #>>44494983 #>>44495236 #>>44496260 #
UncleOxidant ◴[] No.44495236[source]
It's not just distorting discussions it's leading people to put a lot of faith in what LLMs are telling them. Was just on a zoom an hour ago where a guy working on a startup asked ChatGPT about his idea and then emailed us the result for discussion in the meeting. ChatGPT basically just told him what he wanted to hear - essentially that his idea was great and it would be successful ("if you implement it correctly" was doing a lot of work). It was a glowing endorsement of the idea that made the guy think that he must have a million dollar idea. I had to be "that guy" who said that maybe ChatGPT was telling him what he wanted to hear based on the way the question was formulated - tried to be very diplomatic about it and maybe I was a bit too diplomatic because it didn't shake his faith in what ChatGPT had told him.
replies(1): >>44495381 #
1. TimTheTinker ◴[] No.44495381[source]
LLMs directly exploit a human trust vuln. Our brains tend to engage with them relationally and create an unconscious functional belief that an agent on the other end is responding with their real thoughts, even when we know better.

AI apps ought to at minimum warn us that their responses are not anyone's (or anything's) real thoughts. But the illusion is so powerful that many people would ignore the warning.