←back to thread

A non-anthropomorphized view of LLMs

(addxorrol.blogspot.com)
475 points zdw | 2 comments | | HN request time: 0.43s | source
Show context
Al-Khwarizmi ◴[] No.44487564[source]
I have the technical knowledge to know how LLMs work, but I still find it pointless to not anthropomorphize, at least to an extent.

The language of "generator that stochastically produces the next word" is just not very useful when you're talking about, e.g., an LLM that is answering complex world modeling questions or generating a creative story. It's at the wrong level of abstraction, just as if you were discussing an UI events API and you were talking about zeros and ones, or voltages in transistors. Technically fine but totally useless to reach any conclusion about the high-level system.

We need a higher abstraction level to talk about higher level phenomena in LLMs as well, and the problem is that we have no idea what happens internally at those higher abstraction levels. So, considering that LLMs somehow imitate humans (at least in terms of output), anthropomorphization is the best abstraction we have, hence people naturally resort to it when discussing what LLMs can do.

replies(18): >>44487608 #>>44488300 #>>44488365 #>>44488371 #>>44488604 #>>44489139 #>>44489395 #>>44489588 #>>44490039 #>>44491378 #>>44491959 #>>44492492 #>>44493555 #>>44493572 #>>44494027 #>>44494120 #>>44497425 #>>44500290 #
grey-area ◴[] No.44487608[source]
On the contrary, anthropomorphism IMO is the main problem with narratives around LLMs - people are genuinely talking about them thinking and reasoning when they are doing nothing of that sort (actively encouraged by the companies selling them) and it is completely distorting discussions on their use and perceptions of their utility.
replies(13): >>44487706 #>>44487747 #>>44488024 #>>44488109 #>>44489358 #>>44490100 #>>44491745 #>>44493260 #>>44494551 #>>44494981 #>>44494983 #>>44495236 #>>44496260 #
cmenge ◴[] No.44487706[source]
I kinda agree with both of you. It might be a required abstraction, but it's a leaky one.

Long before LLMs, I would talk about classes / functions / modules like "it then does this, decides the epsilon is too low, chops it up and adds it to the list".

The difference I guess it was only to a technical crowd and nobody would mistake this for anything it wasn't. Everybody know that "it" didn't "decide" anything.

With AI being so mainstream and the math being much more elusive than a simple if..then I guess it's just too easy to take this simple speaking convention at face value.

EDIT: some clarifications / wording

replies(4): >>44488265 #>>44488849 #>>44489378 #>>44489702 #
stoneyhrm1 ◴[] No.44489378[source]
I mean you can boil anything down to it's building blocks and make it seem like it didn't 'decide' anything. When you as a human decide something, your brain and it's neurons just made some connections with an output signal sent to other parts that resulting in your body 'doing' something.

I don't think LLMs are sentient or any bullshit like that, but I do think people are too quick to write them off before really thinking about how a nn 'knows things' similar to how a human 'knows' things, it is trained and reacts to inputs and outputs. The body is just far more complex.

replies(1): >>44489781 #
1. grey-area ◴[] No.44489781[source]
I wasn't talking about knowing (they clearly encode knowledge), I was talking about thinking/reasoning, which is something LLMs do not in fact do IMO.

These are very different and knowledge is not intelligence.

replies(1): >>44495638 #
2. chpatrick ◴[] No.44495638[source]
To me all of those are so vaguely defined that arguing whether an LLM is "really really" doing something is kind of a waste of time.

It's like we're clinging on to things that make us feel like human cognition is special so we're saying LLM's arent "really" doing it, then not defining what it actually is.