The filesystem should do files, if you want something more complex do it in userspace. We even have FUSE if you want to use the Filesystem API with your crazy network database thing.
The filesystem should do files, if you want something more complex do it in userspace. We even have FUSE if you want to use the Filesystem API with your crazy network database thing.
The extended (not extant) family (including ext4) don't support copy-on-write. Using them as your primary FS after 2020 (or even 2010) is like using a non-journaling file system after 2010 (or even 2001)--it's a non-negotiable feature at this point. Btrfs has been stable for a decade, and if you don't like or trust it, there's always ZFS, which has been stable 20 years now. Apple now has AppFS, with CoW, on all their devices, while MSFT still treats ReFS as unstable, and Windows servers still rely heavily on NTFS.
They seem to be slowly introducing it to the masses, Dev drives you set up on Windows automatically use ReFS
You get that with APFS by default on macOS these days and those features come for free in btrfs, some in XFS, etc on Linux.
That's pretty much built into most mass storage devices already.
> If a disk bitflips one of my files
The likelihood and consequence of this occurring is in many situations not worth the overhead of adding additional ECC on top of what the drive does.
> ext* won't do anything about it.
What should it do? Blindly hand you the data without any indication that there's a problem with the underlying block? Without an fsck what mechanism do you suppose would manage these errors as they're discovered?
> That's pretty much built into most mass storage devices already.
And ZFS has shown that it is not sufficient (at least for some use-cases, perhaps less of a big deal for 'residential' users).
> The likelihood and consequence of this occurring is in many situations not worth the overhead of adding additional ECC on top of what the drive does.
Not worth it to whom? Not having the option available at all is the problem. I can do a zfs set checksum=off pool_name/dataset_name if I really want that extra couple percentage points of performance.
> Without an fsck what mechanism do you suppose would manage these errors as they're discovered?
Depends on the data involved: if it's part of the file system tree metadata there are often multiple copies even for a single disk on ZFS. So instead of the kernel consuming corrupted data and potentially panicing (or going off into the weeds) it can find a correct copy elsewhere.
If you're in a fancier configuration with some level of RAID, then there could be other copies of the data, or it could be rebuilt through ECC.
With ext*, LVM, and mdadm no such possibility exists because there are no checksums at any of those layers (perhaps if you glom on dm-integrity?).
And with ZFS one can set copies=2 on a per-dataset basis (perhaps just for /home?), and get multiple copies strewn across the disk: won't save you from a drive dying, but could save you from corruption.
Being able to quickly take a "backup" copy of some multi-gb directory tree before performing some potentially destructive operation on it is such a nice safety net to have.
It's also a handy way to backup file metadata, like mtime, without having to design a file format for mapping saved mtimes back to their host files.
You're thinking of the optimization technique of CoW, as in what Linux does when spawning a new thread or forking a process. I'm talking about it in the context of only ever modifying copies of file system data and metadata blocks, for the purpose of ensuring file system integrity, even in the context of sudden power loss (EDIT: wrong link): https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino...
If anything, ordinary file IO is likely to be slightly slower on a CoW file system, due to it always having to copy a block before said block can be modified and updating block pointers.
What kind of journaling though? By default ext4 only uses journaling for metadata updates, not data updates (see "ordered" mode in ext4(5)).
So if you have a (e.g.) 1000MB file, and you update 200MB in the middle of it, you can have a situation where the first 100MB is written out and the system dies with the other 100MB vanishing.
With a CoW, if the second 100MB is not written out and the file sync'd, then on system recovery you're back to the original file being completely intact. With ext4 in the default configuration you have a file that has both new-100MB and stale-100MB in the middle of it.
The updating of the file data and the metadata are two separate steps (by default) in ext4:
* https://www.baeldung.com/linux/ext-journal-modes
* https://michael.kjorling.se/blog/2024/ext4-defaulting-to-dat...
* https://fy.blackhats.net.au/blog/2024-08-13-linux-filesystem...
Whereas with a proper CoW (like ZFS), updates are ACID.
I looked at that, in hopes of being able to protect my data. Unfortunately, I considered this something of a fatal flaw:
> It uses journaling for guaranteeing write atomicity by default, which effectively halves the write speed.
> What should it do? Blindly hand you the data without any indication that there's a problem with the underlying block?
Well, that's what it does now, and I think that's a problem.
> Without an fsck what mechanism do you suppose would manage these errors as they're discovered?
Linux can fail a read, and IMHO should do so if it cannot return correct data. (I support the ability to override this and tell it to give you the corrupted data, but certainly not by default.) On ZFS, if a read fails its checksum, the OS will first try to get a valid copy (ex. from a mirror or if you've set copies=2), and then if the error can't be recovered then the file read fails and the system reports/records the failure, at which point the user should probably go do a full scrub (which for our purposes should probably count as fsck) and restore the affected file(s) from backup. (Or possibly go buy a new hard drive, depending on the extent of the problem.) I would consider that ideal.
That makes checksums and journals of only marginal usefulness.
I wish some review website would have a robot plug and unplug the power cable in a test rig for a few weeks and rate which SSD manufacturers are robust to this stuff.
According to that 10^14 metric I should see read errors just about every month. Except I have just about zero.
Current disks are ~4 years, runs 24/7, and excluding a bad cable incident I've had a single case of a read error (recoverable, thanks ZFS).
I suspect those URE numbers are made by the manufacturers figuring out they can be sure the disk will do 10^14, but they don't actually try to find the real number because 10^14 is good enough.
Speed is sometimes more important than absolute reliability, but it’s still an undesirable tradeoff.
No, it doesn't. Maybe you're thinking of shadow volume copies or something else. CoW files systems never modify data or metadata blocks directly, only modifying copies, with the root of the updated block pointer graph only updated after all other changes have been synced. Read this: https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino...
Anything unimportant is really just being cached and it's probably fine if it gets corrupted.
And before that I have been using 8x WD Reds 3TB for 6-7 years, which have 10^14 in the specs[2], and had the same experience with those.
Yes smaller size, but I ran scrubbing on those biweekly, and over so many years?
[1]: https://www.seagate.com/files/www-content/datasheets/pdfs/ir...
[2]: https://documents.westerndigital.com/content/dam/doc-library...
> while MSFT still treats ReFS as unstable, and Windows servers still rely heavily on NTFS.
By this I implied it's an embarrassment to MSFT that iOS devices have a better, more reliable file system (AppFS) than even Windows servers now (having to rely on NTFS until ReFS is ready for prime time). If HN users and mods didn't tone-police so heavily, I could state things more frankly.
Which implies you can already correct errors through a simple majority mechanism.
> or it could be rebuilt through ECC.
So just by having the appropriate level of RAID you automatically solve the problem. Why is this in the fs layer then?
I don't think so? You set copies=2, and the disk says that your file starts with 01010101, except that the second copy says your file starts with 01010100. How do you tell which one is right? For that matter, even with only one copy ex. ZFS can tell that what it has is wrong even if it can't fix it, and flagging the error is still useful.
> So just by having the appropriate level of RAID you automatically solve the problem. Why is this in the fs layer then?
Similarly, you shouldn't need RAID to catch problems, only (potentially) to correct them. I do agree that it doesn't necessarily have to be in the FS layer, but AFAIK Linux doesn't have any other layers that do a good job of it (as mentioned above, dm-integrity exists but halving the write speed is a pretty big problem).
However, there is also a long time since XFS supports snapshots.
See for example:
https://thelinuxcode.com/xfs-snapshot/
I am not sure what you mean by "whole-volume" snapshots, but I have not noticed any restrictions in the use of the XFS snapshots. As expected, they store a snapshot of the entire file system, which can be restored later.
In many decades of managing computers with all kinds of operating systems and file systems, on a variety of servers and personal computers, I have never had the need to shrink a file system. I cannot imagine how such a need can arise, except perhaps as a consequence of bad planning. There are also many decades since I have deprecated the use of multiple partitions on a storage device, with the exception of bootable devices, which must have a dedicated partition for booting, conforming to the BIOS or UEFI expectations. For anything that was done in the ancient times with multiple partitions there are better alternatives now. With the exception of bootable USB sticks with live Linux or FreeBSD partitions, I use XFS on whole SSDs or HDDs (i.e. unpartitioned), regardless if they are internal or external, so there is never any need for changing the size of the file system.
Even so, copying a file system to an external device, reformatting the device and copying the file system back is not likely to be significantly slower than shrinking in place. In fact sometimes it can be faster and it has the additional benefit that the new copy of the file system will be defragmented.
Much more significant than the lack of shrinking ability, which may slow down a little something that occurs very seldom, is that both EXT4 and XFS are much faster for most applications than the other file systems available for Linux, so they are fast for the frequent operations. You may choose another file system for other reasons, but choosing it for making faster a very rare operation like shrinking is a very weak reason.
The disk is going to report an uncorrected error for one of them.
I.e. back in ~ 2013-2014 while moving some baremetal Windows server into VMware, srhinking and then optimizing MFT helped to save AFAIR 2 hours of downtime window.
> except perhaps as a consequence of bad planning
Assuming people go to Clouds instead of physical servers because they may need to add 100 more nodes "suddenly" - selling point of Clouds is "avoid planning" - one may expect cases of need of shrinking are rising, now lowing. It may be mitigated by different approaches of course - i.e. often it's easier to resetup VM, but yet.
In migrations you normally copy the file system elsewhere, to the cloud or to different computers, you do not shrink it in place, which is what XFS cannot do. Unlike with Windows, copying Linux file systems, including XFS, during migrations to different hardware is trivial and fast. The same is true for multiplicating a file system to a big set of computers.
Shrinking in place is normally needed only when you share a physical device between 2 different operating systems, which use incompatible file systems, e.g. Windows and Linux, and you discover that you did not partition well the physical device and you want to shrink the partition allocated for one of the operating systems, in order to be able to expand the partition allocated for the other operating system.
Sharing physical devices between Windows and any other operating systems comes with a lot of risks and disadvantages, so I strongly recommend against it. I have stopped sharing Windows disks decades ago. Now, if I want to use the same computer in Windows and in another operating system, e.g. Linux or FreeBSD, I install Windows on the internal SSD, and, when desired, I boot Linux or FreeBSD from an external SSD. Thus the problem of reallocating a shared SSD/HDD by shrinking a partition never arises.
I am inclined to agree. However, I have one thought to the contrary. When a mechanical drive is failing, you tend to have debris inside the drive hitting the platters, causing damage that creates more debris, accelerating the drive’s eventual death, with read errors becoming increasingly common while it happens. When those are included in averages, the 10^14 might very well be accurate. I have not done any rigorous analysis to justify this thought and I do not have the data to be able to do that analysis. It is just something that occurs to me that might justify the 10^14 figure.
As for ensuring data integrity, I cannot talk about other CoW filesystems, but ZFS has an atomic transaction commit that relies on CoW. In ZFS, your changes either happened or they did not happen. The entire file system is a giant merkle tree and every change requires that all nodes of the tree up to the root be rewritten. To minimize the penalty of CoW, these changes are aggregated into transaction groups that are then committed atomically. Thus, you simultaneously have both the old and new versions available, plus possible more than just 1 old version. ZFS will start recycling space after a couple transaction group commits, but often, you can go further back in its history if needed after some catastrophic event, although ZFS makes no solid guarantee of this (until you fiddle with module parameter settings to prevent reclaim from being so aggressive).
If it counts for anything, I have hundreds of commits in OpenZFS, so I am fairly familiar with how ZFS works internally.
https://github.com/openzfs/zfs/blob/6af8db61b1ea489ade2d5344...
Small writes on ZFS are ACID. If ZFS made large writes ACID, large writes could block the transaction group commit for arbitrarily long periods, which is why it does not. Just imagine writing a 1PB file. It would likely take a long time (days?) and it is just not reasonable to block the transaction group commit until it finishes.
That said, for your example, you will often have all of the writes go into the same transaction group commit, such that it becomes ACID, but this is not a strict guarantee. The maximum atomic write size on ZFS is 32MB, assuming alignment. If the write is not aligned to the record size, it will be smaller, as per:
https://github.com/openzfs/zfs/blob/6af8db61b1ea489ade2d5344...
Yet all the pointers in that metadata will point to data which no longer exists, and your filesystem will be destroyed.
Define "fs layer". ZFS has multiple layers with-in it:
The "file system" that most people interact with (for things like homedirs) is actually a layer with-in ZFS' architecture, and is called the ZFS POSIX layer (ZPL). It exposes a POSIX file system, and take the 'tradition' Unix calls and creates objects. Those objects are passed to the Data Management Unit (DMU), which then passed them down to Storage Pool Allocator (SPA) layer which actually manages the striping, redundancy, etc.
* https://ibug.io/blog/2023/10/zfs-block-size/
There was a bit of a 'joke' back in the day about ZFS being a "layering violation" because it subsumed into itself RAID, volume management, and a file system, instead of having each in a separate software packages:
* https://web.archive.org/web/20070508214221/https://blogs.sun...
* https://lildude.co.uk/zfs-rampant-layering-violation
The ZPL is not used all the time: one can create a block device ("zvol") and put swap or iSCSI on it. The Lustre folks have their own layer that hooks into the DMU and doesn't bother with POSIX semantics:
* https://wiki.lustre.org/ZFS_OSD_Hardware_Considerations
* https://www.eofs.eu/wp-content/uploads/2024/02/21_andreas_di...
Emperical evidence has shown otherwise: I have regularly gotten checksum error reports that ZFS has complained about during a scrub.
The ZFS developers have said in interviews that disks, when asked from LBA 123 have returned the contents of LBA 234 (due to disk firmware bugs): the on-disk checksum for 234 is correct, and so the bits were passed up the stack, but that's not the data that the kernel/ZFS asked for. It is only be verifying at the file system layer than the problem was caught (because at the disk layer things were "fine").
A famous paper that used Google's large quantity of drives as a 'sample population' mentions file system-level checks:
* https://www.cs.toronto.edu/~bianca/papers/fast08.pdf
See also the Google File System paper (§5.2 Data Integrity):
* https://research.google/pubs/the-google-file-system/
Trusting drives is not wise.